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Logic and functional operations using a near-field optically coupled quantum-dot system
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This paper investigates the exciton dynamics in a three-quantum-dot system coupled via an optical near
field. The system consists of two identical quantum dots coupled coherently~the coherent operation part! and
a third quantum dot with exciton sublevels~the output part!. It provides certain characteristic functional
operations depending on the initial excitation, as well as symmetry of the coupling strengths or the spatial
arrangement. First, we analytically obtain the coupling strength between two quantum dots via an optical near
field and give a numerical estimation for a CuCl quantum-cube system. Then, a resonance condition between
the two parts is shown; this depends on the initial excitation in the coherent operation part. Using this
condition, which can be realized by adjusting the energy level of a quantum dot in the output part,AND- and
XOR-logic operations can be demonstrated in a symmetrically arranged quantum-dot system. We also discuss
how the asymmetry of the system affects the energy transfer through certain coupled states in the coherent
operation part that would be forbidden in a symmetrically arranged system. Although the asymmetry degrades
the signal contrast for logic operations, it is expected to open up new techniques for novel device technologies
where quantum entangled states are mediated in the operations.

DOI: 10.1103/PhysRevB.69.115334 PACS number~s!: 73.21.La, 42.79.Ta, 71.35.Gg
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I. INTRODUCTION

The miniaturization of the constituents of convention
photonic devices will reach a barrier in the near future as
device integration progresses. A 1043104 matrix switch will
be required to realize the necessary high data transmis
rates, which are expected to reach 40 TB/s by 2015,1 and the
size of each element will become less than 100 nm, far be
the diffraction limit of light. In order to overcome this ba
rier, nanophotonics, in which local electromagnetic interac
tions between nanometric materials and an optical near
are utilized,2 must be promising technology. Since an optic
near field is not limited by the diffraction of light, this tech
nology is expected to enable signal transfer and contro
nanometric device elements.

The characteristic features of an optical near field can
utilized to achieve functional operations in nanophotonic
vices, which are discussed in this paper. One such featu
the high spatial localization, which enables us to access
dividual nanometric elements in devices that are smaller t
the diffraction limit of light. This feature is widely used i
scanning near-field optical microscopy and spectroscopy3 for
nanometric structures,4–6 single molecules,7 and biological
specimens.8 On the basis of the spatial localization of a
optical near field, an interesting phenomenon of dipo
forbidden energy transfer has been observed experimen
in a semiconductor quantum-dot system.9 Several theoretica
studies of a few quantum-dot systems related to optical n
field techniques have been reported10 and the dipole-
forbidden transition has been also expected11,12 by consider-
ing nonlocal susceptibility and a highly localized optic
field. Another characteristic feature of an optical near field
the anomalous dispersion relation due to the coupling
tween the photon and the material excitation.13 This can
0163-1829/2004/69~11!/115334~13!/$22.50 69 1153
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bring about collective dynamics inherent in optical near-fie
interactions in a system consisting of several nanome
materials.14,15

In this paper, we propose functional devices which con
of several quantum dots coupled via an optical near field.
device operations, unidirectional signal transfer from inpu
output terminals must occur. We previously proposed us
several quantum dots to form the fundamental blocks o
nanophotonic device, in which the discrete energy lev
resonantly couple with each other via an optical near fie
Intra-sublevel relaxation due to exciton-phonon coupling i
quantum dot guarantees unidirectional energy transfer
nanophotonic switch has been studied both experimenta16

and theoretically17,18 using such a coupled quantum-dot sy
tem, and a switch was recently demonstrated using C
quantum cubes.16 In such nanophotonic devices using th
resonant energy transfer, quantum coherence survives f
short period of time; afterwards, the excitation moves in
lower-energy state.19 The proposed coupled quantum-d
system consists of two characteristic parts similar to
nanophotonic switch mentioned above: one is the portion
the near-field optically coupled nanometric materials t
maintains quantum coherence, which we call thecoherent
operation part; and the other determines certain final sta
with dissipation or decoherence, which we call theoutput
part. This paper focuses on taking full advantage of the
coherent and defined output parts to achieve functional
erations. As a typical example, we consider the thr
quantum-dot system illustrated in Fig. 1, where the excito
are carriers for the signal transfer. In the system, two ide
cal quantum dots~QD-A and -B! are resonantly coupled with
each other via an optical near field.

Various authors have investigated the coupling proper
and dynamics in a pair of quantum dots. For example,
©2004 The American Physical Society34-1
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energy shift due to exciton-exciton or Coulomb interactio
between electrons and holes has been evaluated theoret
to process quantum information,20,21 and a controlled-NOT

logic gate has been proposed using the energy shift.22 In
these studies, excitons or qubits were controlled by two-co
laser pulses of far-field light. As a similar subject to th
paper, Quiroga and Johnson23 theoretically discussed the dy
namics in two- and three-quantum-dot systems and prese
a way to prepare both quantum Bell and Greenberger-Ho
Zeilinger entangled states, by using far-field light, which
lows only global excitation of two and three quantum do
with spatially symmetric arrangement. By contrast, we d
with coupled quantum-dot systems arranged symmetric
and asymmetrically, which are individually excited by th
optical near field, and the intra-sublevel relaxation is a
considered for the unidirectional energy transfer. Note t
the excitation in each quantum dot can be prepared indiv
ally owing to the spatial localization of the optical near fie
The exciton dynamics driven by the optical near field h
been investigated in the case of a coupled two-quantum
system with a relaxation process.17 The energy transfer be
tween two quantum dots is expressed as a Fo¨rster process,24

and the nutation of excitation occurs in the strongly coup
or resonant energy levels, corresponding to the coheren
eration part in our system. For the short period before re
ation, certain coherently coupled states appear in the co
ent operation part, depending on the initial excitation.
order to prepare the initial excitation, the shorter excitat
time in the individual quantum dot than the energy-trans
time between two identical quantum dots is necessary, wh
the excitation time is inversely proportional to the optic
near-field intensity. The energy-transfer time or coupli
strength via an optical near field can be controlled by adju
ing interdot spacings. The population in the coheren
coupled states can be transferred to the third quantum
~QD-C! if the energy level of QD-C is adjusted to coup
resonantly with the entangled states in the coherent opera
part. If this happens, QD-C operates as the output part, w
involves an intra-sublevel relaxation process due to

FIG. 1. Illustration of a three-quantum-dot system that cons
of two identical two-level dots~QD-A and -B! and a three-level do
~QD-C!. Since the coupling between QD-A and -B is stronger th
that between QD-A and C~QD-B and -C!, the system is divided
into two parts: a coherent operation part with optical nutation, a
an output part with a dissipation process.
11533
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exciton-phonon interaction. In this manner, unidirection
energy or signal transfer is satisfied.

This paper examines the exciton dynamics in this sys
illustrated in Fig. 1 using density-matrix formalism. The d
namics of the system can be determined analytically w
three quantum dots are arranged symmetrically.AND- and
XOR-logic operations can also be demonstrated by adjus
the energy configuration in this three-quantum-dot syste
The asymmetry due to the coupling strength of the quantu
dot pairs via an optical near field or quantum-dot arran
ment also plays an important role in the exciton dynami
We find that an asymmetric arrangement permits ene
transfer from the coherent operation part to the output p
via a certain quantum entangled state, the so-called ‘‘d
state’’25 in a symmetric system. This characteristic featu
due to the spatial arrangement may be useful for detectio
quantum entangled state. Here, note that these logic
functional operations are in the irreversible process, altho
quantum entangled states are partially mediated to sort
the initial excitations. This resembles quantum informati
processing, however, we do not need long coherence tim
the quantum computation requires. Regarding quantum
formation processing with dissipation or decoherence, th
are several reports which are discussed such as toleranc
decoherence-free operations.26,27

This paper is organized as follows. Section II derives
optical near-field coupling between two energy levels in t
quantum dots and shows the existence of dipole-forbid
energy transfer mediated by an optical near field. The c
pling strength is also estimated numerically and is used
discuss the exciton dynamics in a three-quantum-dot sys
Section III is devoted to the formulation of the exciton d
namics in the relevant system using density-matrix form
ism. Here, we present the ‘‘selective’’ energy transfer fro
the coherent operation part to the output part. Based on
feature, we show that logic operations can be realized i
symmetrically arranged quantum-dot system. Section IV d
cusses the effects of the asymmetry using the numerical
citon dynamics results. Finally, concluding remarks are giv
in Sec. V.

II. OPTICAL NEAR-FIELD COUPLING

In this section, we formulate an optical near-field coupli
between two quantum dots using the multipolar QE
Hamiltonian28,29 in the dipole approximation,m•D, wherem
and D represent the transition dipole moment and elec
displacement field, respectively. There are several adv
tages to use the multipolar QED Hamiltonian instead of
minimal coupling Hamiltonianp•A, p being the electronic
momentum andA the vector potential; first of all, the multi
polar QED Hamiltonian does not contain any explicit inte
molecular or inter-quantum-dot Coulomb interactions in t
interaction Hamiltonian and entire contribution to the ful
retarded result originates from exchange of transverse p
tons, while in the minimal coupling, the intermolecular inte
actions arise both from exchange of transverse photo
which include static components, and from instantaneous
termolecular electrostatic interactions.30 Second, it clarifies
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physical interpretation of the dipole-forbidden transition v
the optical near field as discussed below. Basic ideas in
formulation are to express internal electronic structures
quantum dot regarding them as collection of local dipo
and to investigate the interactions between nanometric m
rials and spatially varied optical near fields. We can a
depict multipoles for a single quantum dot by using
effective-mass approximation. Such theoretical approach
been already published31 where the enhancement of electr
quadrupole coupling was pointed out by assuming st
variation of electric field due to the optical near field. Th
phenomenon is equivalent to our result of the dipo
forbidden transition, but the field variation in our theoretic
formulation is caused by the coupling between the local
poles in the neighboring quantum-dot pair@see Fig. 2~b!#.

In the following sections, we present the interacti
Hamiltonian in second-quantized form in terms of electr
basis functions satisfying the quantum-dot boundary con
tions, as well as transition dipole moments of excitons, a
derive an optical near-field coupling on the basis of the p
jection operator method we previously proposed.

A. Interaction Hamiltonian

According to the dipole coupling in the multipolar Hami
tonian, the interaction between photons and nanometric
terials can be written as29

Ĥ int52E c†~r!m~r!c~r!•D̂~r!dr, ~1!

where c†(r) and c(r) denote field operators for electro
creation and annihilation, respectively, and the dipole m
ment and the second-quantized electric displacement ve
at positionr are expressed asm(r) andD̂(r), respectively. In
a quantum dot, the electron field operators should be
panded in terms of basis functionsfnn(r) that satisfy the
electron boundary conditions in a quantum dot, which
analogous to those in bulk materials where the Bloch fu
tions satisfying periodic boundary condition are used. T
field operators are given by

c~r!5 (
n5c,v

(
n

ĉnnfnn~r!, c†~r!5 (
n5c,v

(
n

ĉnn
† fnn* ~r!,

~2!

where ĉnn
† and ĉnn represent the creation and annihilatio

operators for the electrons specified by (n,n), respectively,
and the indicesn5c,v denote the conduction and valen
bands. The discrete energy levels in the quantum dot
labeledn. The basis functions satisfy the following com
pleteness condition, as well as orthonormalization:

(
n5c,v

(
n

fnn* ~r!fnn~r8!5d~r2r8!. ~3!

Simultaneously, we express the electric displacement ve
D̂(r) using exciton-polariton creation and annihilation ope
tors (ĵk

† ,ĵk), where branch suffix of the exciton-polariton
suppressed by taking only an upper branch. We cons
11533
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exciton-polaritons because a nanometric system in a n
field optical environment is always surrounded by mac
scopic materials, such as the substrate, matrix, fiber pr
and so on. Previously,13,32 we proposed an effective interac
tion for such a nanometric system mediated by excit
polaritons that are expressed in mixed states between
tons and macroscopic material excitations instead of f
photons. We showed that such a treatment provides a g
description of the characteristics of an optical near field33

Using this, the electric displacement vectorD̂(r) in Eq. ~1!
can be written as34

D̂~r!5 iA2p

V (
k

(
l51

2

el~k! f ~k!~ ĵke
ik•r2 ĵk

†e2 ik•r!,

~4!

with

f ~k!5
\ck

AE~k!
A E2~k!2Em

2

2E2~k!2Em
2 2\2c2k2

, ~5!

where\, V, el(k), andk are the Dirac constant, the quant
zation volume, the unit polarization vector, and the wa
vector of the exciton-polaritons, respectively. Here we
sumeel(k) as real. The speed of light in a vacuum isc, and
the exciton-polariton energy with a wave vectork and the
macroscopic material excitation energy areE(k) and Em ,
respectively. Substituting Eqs.~2! and ~4! into Eq. ~1! gives
the interaction Hamiltonian in the second-quantized rep
sentation as

Ĥ int5 (
nnn8n8kl

~ ĉnn
† ĉn8n8ĵkgnnn8n8kl2 ĉnn

† ĉn8n8ĵk
†gnnn8n82kl!,

~6!

with

gnnn8n8kl52 iA2p

V
f ~k!E fnn* ~r!

3@m~r!•el~k!#eik•rfn8n8~r!dr. ~7!

B. Transition moments for exciton states

In order to describe the creation and annihilation of ex
tons in a quantum dot, it is convenient to use the Wann
representation in which electrons are localized in an ato
site R. Then, the electron field operators can be expan
using the Wannier functionswnR(r) instead offnn(r),

c~r!5 (
n5c,v

(
R

ĉnRwnR~r!, c†~r!5 (
n5c,v

(
R

ĉnR
† wnR* ~r!,

~8!

wherecnR
† andcnR denote the creation and annihilation o

erators of electrons at siteR in the energy bandn. These
operators in the Wannier representation are written in te
of ĉnn in Eq. ~2! as follows:
4-3
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ĉnR5 (
n85c,v

(
n

ĉn8nE wnR* ~r!fn8n~r!dr,

ĉnR
† 5 (

n85c,v
(

n
ĉn8n

† E wnR~r!fn8n
* ~r!dr. ~9!

When we assume excitons in the weak-confinement reg
i.e., an exciton Bohr radius to be smaller than the quantu
dot size, the exciton states in a quantum dot specified by
quantum numberm andm can be described by superpositio
of the excitons in the Wannier representation as35

uFmm&5 (
R,R8

Fm~Rc.m.!wm~b!ĉcR8
† ĉvRuFg&,

5 (
R,R8

Fm~Rc.m.!wm~b!(
n,n8

hRnR8n8ĉcn
† ĉvn8uFg&,

~10!

whereFm(Rc.m.) and wm(b) denote the envelope function
for the center of mass and relative motions of the excito
respectively. These areRc.m.5(meR81mhR)/(me1mh) and
b5R82R, whereme andmh are the effective masses of th
electrons and holes. The overlap integralshRnR8n8 are defined
as

hRnR8n85E E wvR* ~r2!wcR8~r1!fcn* ~r1!fvn8~r2!dr1dr2 .

~11!

The sum ofn8 in Eq. ~9! is determined automatically asĉcn
†

and ĉvn8 because the valence band is fully occupied in
initial ground stateuFg&. Using Eqs.~6! and ~10!, the tran-
sition moment from the exciton state to the ground state
obtained as

^FguĤ intuFmm&5 (
n1 ,n2

(
R,R8

Fm~Rc.m.!wm~b!

3(
k

(
l51

2

~ ĵkgvn1cn2kl2 ĵk
†gvn1cn22kl!

3hRn2R8n1
, ~12!

where we use the following relation:

^Fguĉvn1

† ĉcn2
ĉcn3

† ĉvn4
uFg&5dn1n4

dn2n3
. ~13!

In addition, with the help of the completeness and orthon
malization offnn(r) @see Eq.~3!#, we can simplify the prod-
uct of g andh as
11533
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n1 ,n2

gvn1cn2klhRn2R8n1

52 iA2p

V
f ~k!E wvR* ~r!m~r!wcR8~r!•el~k!eik•rdr

'2 iA2p

V
f ~k!@mcv•el~k!#eik•RdRR8 , ~14!

where the transformation of the spatial integral in the fi
line of Eq. ~14! into the sum of the unit cells and the spati
localization of the Wannier functions providesdRR8 in the
second line. The transition dipole moment for each unit c
is defined as

mcv5E
UC

wvR* ~r!m~r!wcR~r!dr. ~15!

We assume that the transition dipole moment is the sam
that of the bulk material, independent of the siteR, and that
the electric displacement vector is uniform at each site.
nally, Eq. ~12! is reduced to

^FguĤ intuFmm&52 iA2p

V (
R

(
k

(
l51

2

f ~k!

3@mcv•el~k!#Fm~R!wm~0!

3~ ĵke
ik•R2 ĵk

†e2 ik•R!. ~16!

Here, we note that the exciton-polariton field expanded
the plane wave with the wave vectork depends on the siteR
in the quantum dot because we do not apply the long-w
approximation that is usually used for far-field light.

C. Optical near-field coupling

To derive the coupling strength between two quant
dots due to the optical near-field interaction, we use the p
jection operator method, which was reported in detail in o
previous paper.32 In this method, the eigenstates of a tot
optical near-field system are divided into two subspaces
relevantP space constructed from the two energy levels
each quantum dot and the exciton-polariton vacuum st
and an irrelevantQ space that is complementary to theP
space and includes exciton-polariton states. Using this
mulation, the coupling strength is given to the lowest ord
as

\U5(
m

^C f
PuĤ intumQ&^mQuĤ intuC i

P&

3S 1

E0i
P 2E0m

Q
1

1

E0 f
P 2E0m

Q D , ~17!

whereE0i
P , E0 f

P , andE0m
Q represent the eigenenergies of t

unperturbed Hamiltonian for the initial and final states inP
space and the intermediate state inQ space, respectively
Since we focus on the interdot interaction of Eq.~17!, we
set the initial and final states inP space to uC i

P&
4-4
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5uFmm
A &uFg

B&u0& and uC f
P&5uFg

A&uFm8m8
B &u0&. Then, the in-

termediate states inQ space that involve exciton-polariton
with the wave vectork are utilized for the energy transfe
from one quantum dot to the other, according toumQ&
5uFg

A&uFg
B&uk& and uFmm

A &uFm8m8
B &uk&. The superscriptsA

and B are used to label two quantum dots. Substituting
~16!, one can rewrite Eq.~17! as

\U5wm
A~0!wm8

B* ~0!E E Fm
A~RA!Fm8

B* ~RB!@YA~RA2RB!

1YB~RA2RB!#dRAdRB , ~18!

where the sum ofRa (a5A,B) in Eq. ~16! is transformed to
the integral form. The functionsYa(RAB), which connect the
spatially isolated two envelope functionsFm

A(RA) and
Fm

B(RB), are defined as

Ya~RAB!52
1

4p2 (
l51

2 E @mcv
A
•êl~k!#@mcv

B
•êl~k!# f 2~k!

3S eik•RAB

E~k!1Ea
1

e2 ik•RAB

E~k!2Ea
Ddk, ~19!

whereRAB5RA2RB is used. In order to obtain an explic
functional form of Ya(RAB), we apply the effective-mas
approximation to the exciton-polaritons,

E~k!5
\2k2

2mp
1Em , ~20!

wheremp is the exciton-polariton effective mass. Using th
approximation, Eq.~19! can be transformed into

Ya~RAB!5~mcv
A
•mcv

B !FWa1e2Da1RABS Da1
2

RAB
1

Da1

RAB
2

1
1

RAB
3 D

2Wa2e2Da2RABS Da2
2

RAB
1

Da2

RAB
2

1
1

RAB
3 D G

2~mcv
A
•R̂AB!~mcv

B
•R̂AB!FWa1e2Da1RAB

3S Da1
2

RAB
1

3Da1

RAB
2

1
3

RAB
3 D

2Wa2e2Da2RABS Da2
2

RAB
1

3Da2

RAB
2

1
3

RAB
3 D G , ~21!

whereRAB andR̂AB are the absolute valueuRABu and the unit
vector defined byRAB /RAB , respectively. The weight coef
ficientsWa6 and decay constantsDa6 are given by

Wa6
5

Ep

Ea

~Em2Ea!~Em1Ea!

~Em2Ep7Ea!~Em6Ea!2Em
2 /2

,

Da6
5

1

\c
AEp~Em6Ea!, ~22!
11533
.

where the exciton-polariton effective mass is rewritten
Ep5mpc2. Since the dipole momentsmcv

A and mcv
B are not

determined as fixed values, we assume that they are par
and take a rotational average of Eq.~21!. Therefore,

^(mcv
A
•R̂AB)(mcv

B
•R̂AB)&5mcv

A mcv
B /3 with mcv

a 5umcv
a u, and

we obtain the final form of the functionYa(RAB) as

Ya~RAB!5
2mcv

A mcv
B

3RAB
~Wa1Da1

2 e2Da1RAB

2Wa2Da2
2 e2Da2RAB!. ~23!

Equation~23! is the sum of two Yukawa functions with
short and long interaction range~heavy and light effective
mass! given by the second equation in Eq.~22!. We can
estimate the coupling strength between two quantum d
from the analytic form of the interaction potential given b
Eqs.~18! and~23!, and we can show the existence of dipol
forbidden energy transfer driven by the optical near-fie
coupling, as discussed in the following section.

D. Numerical results

In this section, we give typical values of the couplin
strength of\U in Eq. ~18! using an example of CuCl quan
tum cubes embedded in a NaCl matrix. Due to the effec
size confinement, the center-of-mass motion and relative
tion for an exciton in a CuCl quantum cube are35

Fm
a~Ra!5S 2

La
D 3/2

sinS pmxxa

La
D sinS pmyya

La
D sinS pmzza

La
D ,

w1s~r !5
1

Apa3
e2r /a, ~24!

respectively, where the atomic site and the quantum num
are represented byRa5(xa ,ya ,za) with a5A,B and m
5(mx ,my ,mz) with mx ,my ,mz51,2,3, . . . . The variables
La anda denote a width of the quantum cube and the Bo
radius of the exciton, respectively. Here, we assume rela
motion in the 1s state. The coupling strength is obtaine
numerically by substituting Eqs.~23! and~24! into Eq. ~18!.
In Fig. 2~a!, the calculation results are plotted as a functi
of the intercube distance. The curve with square dots re
sents the coupling between the dipole-active exciton lev
i.e., m5m85(1,1,1), in two quantum cubes. When we s
the intercube distance and a width of the quantum cube
d55 nm andLA5LB510 nm, respectively, which corre
sponds to the resonant coupling between QD-A and -B
Fig. 1, the coupling strength is about 89meV (U21

57.4 ps). The curve with circular dots is the result form
5(1,1,1) andm85(2,1,1). For conventional far-field light
m85(2,1,1) is the dipole-forbidden exciton level, and it fo
lows that the optical near-field interaction inherently i
volves such a transition because of the finite interact
range. Figure 2~b! is a schematic illustration of the dipole
forbidden transition, in which the optical near field enab
to excite the local dipoles at the near side in a quantum
with dipole-forbidden level for far-field light. This coupling
4-5
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strength is estimated from Fig. 2~a! as \U537 meV (U21

517.7 ps) for d55 nm, and \U514 meV (U21

546.9 ps) ford515 nm, where the cube sizes are set
LA510 nm and LB514.1 nm to realize resonant energ
transfer between the two quantum cubes. The coup
strength (mÞm8) is approximately half that ofm5m8 at the
same intercube distance, but it is strong enough for our p
posed nanophotonic devices. For functional operations,
difference between the coupling strengths can be use
divide the system into two parts, i.e., the coherent opera
and the output parts. Therefore, in the following discuss
of the functional operations, we used55 nm as the values
of the coupling strength between QD-A and B, andd
515 nm for that between QD-A and C or QD-B and C.

III. EXCITON DYNAMICS AND THEIR APPLICATION TO
FUNCTIONAL OPERATIONS

A. Symmetric and antisymmetric states

In this section, we discuss the exciton dynamics in a sy
metrically arranged three-quantum-dot system, as show
Fig. 1. The asymmetric effects on the dynamics are con
ered in the subsequent section. From the symmetry of
system, the following bases are suitable for describing
dynamics using the smallest number of density-ma
elements36:

uS1&5
1

A2
~ uA* BC1C2&1uAB* C1C2&),

uA1&5
1

A2
~ uA* BC1C2&2uAB* C1C2&),

uP18&5uABC1C2* &, uP1&5uABC1* C2&. ~25!

One-exciton statedescribes the condition whereby an excit
exists in either one of the three quantum dots. The gro
and exciton states in each quantum dot, written usinguFg

a&
and uFm(1s)

a & in the preceding section, are represented h
simply asA, B, Ci ( i 51,2), andA* , B* , Ci* , respectively.
Similarly, atwo-exciton stateindicates that two excitons sta
in the system. The suitable bases for the two-exciton st
without occupation of the lower energy level in QD-C a
expressed as

uS28&5
1

A2
~ uA* BC1C2* &1uAB* C1C2* &),

uA28&5
1

A2
~ uA* BC1C2* &2uAB* C1C2* &),

uP28&5uA* B* C1C2&, ~26!

and those with occupation of the lower energy level are
pressed as
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uS2&5
1

A2
~ uA* BC1* C2&1uAB* C1* C2&),

uA2&5
1

A2
~ uA* BC1* C2&2uAB* C1* C2&),

uP2&5uABC1* C2* &, ~27!

where uS& and uA& represent symmetric and antisymmetr
states in the coherent operation part, respectively, and
subscripts 1 and 2 on the left-hand sides in Eqs.~25!, ~26!,
and~27! denote the one- and two-exciton states, respectiv
In the following, we use these bases to evaluate the exc
dynamics in the three-quantum-dot system.

B. Equations of motion and coupling properties

Based on the results of optical near-field coupling in S
II, a model Hamiltonian for the systemĤ is given by

Ĥ5Ĥ01Ĥ int ,

Ĥ05\VÂ†Â1\VB̂†B̂1\(
i 51

2

VCi
Ĉi

†Ĉi ,

Ĥ int5\U~Â†B̂1B̂†Â!1\U8~B̂†Ĉ21Ĉ2
†B̂1Ĉ2

†Â1Â†Ĉ2!,
~28!

FIG. 2. ~a! Optical near-field interaction potential for pairs o
CuCl quantum cubes embedded in a NaCl matrix. The cur
shown with square and circular dots correspond to quantum n
bers for the exciton center-of-mass motionm5m85(1,1,1), and
m5(1,1,1) andm85(2,1,1), respectively. The energy levelm8
5(2,1,1) is a dipole-forbidden state for conventional far-field lig
The parameters are set toEA5EB53.22 eV, Em56.9 eV, mcv

A

5mcv
B 51.7331022 (eV nm3!1/2, LA510 nm,LB510 and 14.1 nm

@m85(1,1,1) and (2,1,1)], anda50.67 nm.~b! Schematic illustra-
tion of a transition between dipole-allowed and dipole-forbidd
states via the optical near-field coupling. Steeply gradient opt
near field enables to excite near side local dipoles in a quantum
with dipole-forbidden (2,1,1) level.
4-6
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where the definitions of the creation and annihilation ope
tors, (Â†,Â), (B̂†,B̂), and (Ĉi

† ,Ĉi), are shown schemati
cally in Fig. 3. The eigenfrequencies for QD-A and -B are
to VA5VB[V, and the optical near-field coupling for th
symmetric system is denoted asUAB[U and UBC5UCA
[U8. The equation of motion for the density operator of t
quantum-dot system,r̂(t), is expressed using the Born
Markov approximation37 as

ṙ̂~ t !52
i

\
@Ĥ01Ĥ int ,r̂~ t !#1

G

2
$2Ĉ1

†Ĉ2r̂~ t !Ĉ2
†Ĉ1

2Ĉ2
†Ĉ1Ĉ1

†Ĉ2r̂~ t !2 r̂~ t !Ĉ2
†Ĉ1Ĉ1

†Ĉ2%, ~29!

where the nonradiative relaxation constant due to excit
phonon coupling is denoted asG. The radiative relaxation
due to exciton-free photon coupling is omitted because
time scale of the optical near-field coupling and the excit
phonon coupling is much faster than the radiative lifetim
which is of the order of a few nanoseconds. Taking ma
elements of Eq.~29! in terms of Eqs.~25! and ~26! after
substituting Eq.~28! into Eq. ~29!, we obtain the following
simultaneous differential equations:

ṙS1 ,S1
~ t !5 iA2U8$rS1 ,P

18
~ t !2rP

18 ,S1
~ t !%,

ṙS1 ,P
18
~ t !5H i ~DV2U !2

G

2J rS1 ,P
18
~ t !1 iA2U8$rS1 ,S1

~ t !

2rP
18 ,P

18
~ t !%,

ṙP
18 ,S1

~ t !5H 2 i ~DV2U !2
G

2J rP
18 ,S1

~ t !2 iA2U8$rS1 ,S1
~ t !

2rP
18 ,P

18
~ t !%,

ṙP
18 ,P

18
~ t !52 iA2U8$rS1 ,P

18
~ t !2rP

18 ,S1
~ t !%2GrP

18 ,P
18
~ t !,

ṙP1 ,P1
~ t !5GrP

18 ,P
18
~ t !, ~30!

FIG. 3. Schematic drawing of exciton creation and annihilat
operators and the energy-transfer process in a three-quantum
system. The optical near-field couplings for the quantum-dot p
are represented byUAB for QD-A and -B,UBC for QD-B and -C,
and UCA for QD-C and -A. The nonradiative relaxation consta
due to exciton-phonon coupling is denoted byG.
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and

ṙS
28 ,S

28
~ t !5 iA2U8$rS

28 ,P
28
~ t !2rP

28 ,S
28
~ t !%2GrS

28 ,S
28
,

ṙS
28 ,P

28
~ t !5H 2 i ~DV1U !2

G

2J rS
28 ,P

28
~ t !

1 iA2U8$rS
28 ,S

28
~ t !2rP

28 ,P
28
~ t !%,

ṙP
28 ,S

28
~ t !5H i ~DV1U !2

G

2J rP
28 ,S

28
~ t !

2 iA2U8$rS
28 ,S

28
~ t !2rP

28 ,P
28
~ t !%,

ṙP
28 ,P

28
~ t !52 iA2U8$rS

28 ,P
28
~ t !2rP

28 ,S
28
~ t !%, ~31!

where the density-matrix element^aur̂(t)ub& is abbreviated
ra,b(t) and the energy differenceVC2

2V is replaced by

DV. The equations of motion in terms of the bases of E
~27! are not shown, but are derived similarly. Although oth
matrix elements related to the antisymmetric statesuA& also
appear in the equations of motion, they are decoupled fr
the above equations and do not affect the exciton dynam
of the symmetric states.

StatesuS1& and uP18& or uS28& and uP28& are coherently
coupled with each other, as shown by Eqs.~30! and ~31!.
Moreover, it is noteworthy that the energy difference in E
~30! and ~31! makes opposite contributions to the one- a
two-exciton dynamics asDV2U andDV1U, respectively.
This coupling property can be explained by considering
energy levels of a coupled system constructed from th
quantum dots. Figure 4~a! shows the energy levels of
coupled system for one-exciton states. The upper and lo
energy levels are split by the optical near-field coupling\U,

dot
rs

FIG. 4. Schematic explanation of selective energy transfer
~a! one- and~b! two-exciton states. The left and right illustration
represent the initial and final states, respectively. The energy tr
fer between statesuA& and uP& is forbidden because of symmetry
Therefore, the resonance conditions for the energy transfer betw
states uS& and uP& are \(V1U)5\VC2

(DV5U) for a one-
exciton state and 2\V5\(V1VC2

1U) (DV52U) for a two-
exciton state.
4-7
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corresponding to the statesuS1& and uA1&, respectively. This
is confirmed by evaluating the expectation values, i

^S1uĤuS1&.^A1uĤuA1&. A filled circle indicates that an ex
citon occupies the corresponding energy level, while a se
circle indicates that an exciton exists in the energy leve
either QD-A or -B with a certain probability. In order t
realize the resonant energy transfer into the output part
state uP18&, we must set the energy level in QD-C asDV
5U to satisfy the resonance condition of statesuS1& and
uP18&. This is because the matrix element^P18uĤ intuA1& is
zero, so that this transition is forbidden in symmetric s
tems. For the two-exciton states, one exciton is always tra
ferred from stateuP28& to statesuS2& and uP2& via stateuS28&.
Figure 4~b! shows the energy levels of a coupled system
statesuP28& and uS28&. In this case, the center of the ener
splitting due to the optical near-field coupling becom
\(V1VC2

). Therefore, the resonance condition of sta

uP28& and uS28& can be fulfilled whenDV52U is satisfied.
Here, note that the coupling between statesuP28& and uA28& is

also forbidden bŷ A28uĤ intuP28&50. These characteristic en
ergy transfers allow us to pick up selective information ab
either the one- or two-exciton states, i.e., information ab
the initial exciton populations in the coherent operation p
The results are utilized for the functional logic operations
discussed below.

C. Dynamics and logic operations

Analytic solutions of Eqs.~30! and~31! for typical initial
conditions can be obtained readily with the help of Lapla
transforms. The output population for the one-exciton st
can be written as

rP1 ,P1
~ t !5GE t

rP
18 ,P

18
~ t8!dt8

5
1

2
1

4U82

v1
2 2v2

2 $cosf1cos~v1t1f1!

2cosf2cos~v2t1f2!%e2(G/2)t, ~32!

with

v65
1

A2
@~DV2U !21W1W2

6A$~DV2U !21W1
2 %$~DV2U !21W2

2 %#1/2,

f65tan21S 2v6

G D ,

W652A2U86
G

2
, ~33!

for the initial condition rS1 ,S1
(0)5rA1 ,A1

(0)5rS1 ,A1
(0)

5rA1 ,S1
(0)51/2, which corresponds to the conditio

^A* BC1C2ur̂(t)uA* BC1C2&51 and otherwise zero. Solu
tions for the two-exciton states can be obtained from
11533
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equation similar to Eq.~32!, except for the sign ofU, i.e.,
with the resonance conditions inverted. The probability of
exciton occupying the lower energy level in QD-C is

rS2 ,S2
~ t !1rP2 ,P2

~ t !

5GE t

rS
28 ,S

28
~ t8!dt8

52F1

2
1

4U82

v18
22v28

2
$cosf18 cos~v18 t1f18 !

2cosf28 cos~v28 t1f28 !%e2(G/2)tG , ~34!

with

v68 5
1

A2
@~DV1U !21W1W2

6A$~DV1U !21W1
2 %$~DV1U !21W2

2 %#1/2,

f68 5tan21S 2v68

G D , ~35!

where the factor 2 in Eq.~34! comes from the initial condi-
tions for the two-exciton state, i.e.,rP

28 ,P
28
(0)51 and other-

wise zero.
We will now discuss the characteristic behaviors d

scribed by Eqs.~32! and ~34! using a CuCl quantum-cub
system that has the coupling strengths calculated in Sec
\U589 meV and \U8514 meV. Figure 5~a! shows the
temporal evolution of the output populationrP1 ,P1

(t) for

some energy differencesDV. The fastest energy transfer
observed for the conditionDV5U ~dotted curve!, where the
population can reach half of the maximum value. This
because the coherent operation part couples with the ou
part in the one-exciton state via statesuS1& and uP18&. How-
ever, stateuS1& is not fully occupied when we set the initia
condition so that only one quantum cube is excited indep
dently. In other words, stateuA1&, which decouples state
uP18& in a symmetric system, is excited simultaneously, a
the population remains in the same stateuA1& without tem-
poral evolution. Conversely, for two-exciton states@Fig.
5~b!#, the energy transfer occurs under the resonance co
tion DV52U and the population can reach unity becau
the initial stateuP28& is independent of stateuA28&.

The steepness of the resonance determines the contra
the output signal. In Fig. 6, the population att5100 ps,
which is the time until energy transfer is almost complet
under resonance conditionsDV56U, is plotted as a func-
tion of the energy differenceDV for the one- and two-
exciton states, as shown by the solid and dashed curves
spectively. We clearly find that two types of switchin
operations can be realized by choosing the appropriate
ergy differenceDV56U. From Eqs.~32! and~34!, narrow
4-8
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peaks are obtained whenW1!1 andW250, i.e., 2A2U8
;G/2!1. In this case, a high contrast logic operation can
achieved.

These results are summarized in Table I, which shows
logic operations inherent in nanophotonic devices using ty
cal coherent process and the process with decoherence
occur in a quantum-dot system. The system behaves a
AND-logic gate when the energy difference is set toDV5
2U, and the system provides anXOR-like-logic operation
whenDV5U. The value 0.5 indicates that the signal can
detected at a 1/2 probability level. As explained in the Int
duction, these operations are different from the quant
logic, and long quantum coherence time is unnecessary.

FIG. 5. Temporal evolution of the output populations for~a!
one- and ~b! two-exciton states. The solid, dashed, and dot
curves represent the results for the energy differenceDV52U, 0,
andU, respectively. The parameters are set to\U589 meV, \U8
514 meV, and G21510 ps. The output population for the one
exciton state does not exceed a value of 0.5~the horizontal gray
line! because of the initial conditions.

FIG. 6. Variation in the output populations at a fixed time ot
5100 ps as a function of the energy differenceDV. The solid and
dashed curves represent the one- and two-exciton states, re
tively. The optical near-field coupling strengths\U and \U8 and
the nonradiative relaxation constantG have the same values as
Fig. 5.
11533
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critical limit of these logic gates is determined by the follow
ing condition; the energy-transfer time from the coherent
eration part to the output part, which is estimated about 50
for the CuCl quantum-cube system, is enough shorter t
the radiative lifetime (;1 ns) of excitons in each quantum
dot.

IV. EFFECTS OF ASYMMETRY ON EXCITON DYNAMICS

It is valuable to examine the exciton dynamics in
asymmetrically arranged quantum-dot system to estimate
fabrication tolerance for the system described above an
propose further functional operations inherent in nanopho
nic devices. In this section, we demonstrate the effects
asymmetry numerically. In addition, we comment on a po
tive use of these effects, i.e., the possibility of access
quantum entangled states depending on the prepared in
excitation in a quantum-dot system. The simultaneous dif
ential equations in an asymmetric system are given in par

ṙS1 ,S1
~ t !5 iA2Ū8@rS1 ,P

18
~ t !2rP

18 ,S1
~ t !#1 iDVAB@rS1 ,A1

~ t !

2rA1 ,S1
~ t !#,

ṙS1 ,P
18
~ t !5H i ~DV2U !2

G

2J rS1 ,P
18
~ t !1 iA2Ū8@rS1 ,S1

~ t !

2rP
18 ,P

18
~ t !#2 iA2DU8rS1 ,A1

~ t !

2 iDVABrA1 ,P
18
~ t !,

ṙA1 ,A1
~ t !5 iA2DU8@rP

18 ,A1
~ t !2rA1 ,P

18
~ t !#

2 iDVAB@rS1 ,A1
~ t !2rA1 ,S1

~ t !#,

ṙA1 ,P
18
~ t !5H i ~DV1U !2

G

2J rA1 ,P
18
~ t !1 iA2Ū8rA1 ,S1

~ t !

2 iA2DU8@rA1 ,A1
~ t !2rP

18 ,P
18
~ t !#

2 iDVABrS1 ,P
18
~ t !, ~36!

for the one-exciton states, and

d

ec-

TABLE I. Relationship between the input and output popu
tions for the energy differenceDV56U.

Input Output: C
A B DV52U DV5U

0 0 0 0
1 0 0 0.5
0 1 0 0.5
1 1 1 0
4-9
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ṙS
28 ,S

28
~ t !52GrS

28 ,S
28
~ t !1 iA2Ū8@rS

28 ,P
28
~ t !2rP

28 ,S
28
~ t !#

1 iDVAB@rS
28 ,A

28
~ t !2rA

28 ,S
28
~ t !#,

ṙS
28 ,P

28
~ t !5H 2 i ~DV1U !2

G

2J rS
28 ,P

28
~ t !1 iA2Ū8@rS

28 ,S
28
~ t !

2rP
28 ,P

28
~ t !#1 iA2DU8rS

28 ,A
28
~ t !

2 iDVABrA
28 ,P

28
~ t !,

ṙA
28 ,A

28
~ t !52GrA

28 ,A
28
~ t !2 iA2DU8@rP

28 ,A
28
~ t !2rA

28 ,P
28
~ t !#

2 iDVAB@rS
28 ,A

28
~ t !2rA

28 ,S
28
~ t !#,

ṙA
28 ,P

28
~ t !5H 2 i ~DV2U !2

G

2J rA
28 ,P

28
~ t !1 iA2Ū8rA

28 ,S
28
~ t !

1 iA2DU8@rA
28 ,A

28
~ t !2rP

28 ,P
28
~ t !#

2 iDVABrS
28 ,P

28
~ t !, ~37!

for the two-exciton states. Here, we only present the eq
tions that differ from Eqs.~30! and ~31! ~see the Appendix
for more details!, and we redefine the parametersDV

5VC2
2(VA1VB)/2, DVAB5VA2VB , Ū85(UBC

1UCA)/2, and DU85(UBC2UCA)/2. In the asymmetric
system, the exciton dynamics between statesuS& and uP& do
not change, provided the coupling strengthU8 for a symmet-
ric system is replaced by the average valueŪ8 in Eqs.~36!
and~37!. The main difference is that the matrix elements
statesuA& can couple with statesuS& anduP& in an asymmet-
ric system, while these are decoupled in a symmetric sys
Two types of coupling emerge in an asymmetric system:
originates from the energy differenceDVAB between QD-A
and -B, and the other comes from the arrangement of
three quantum dots, which is expressed using the param
DU8. Previously,17 we discussed the influence of the ener
difference on the exciton dynamics in a two-quantum-
system that mainly degrades the signal contrast. Here,
focus on the effects of asymmetry due to the arrangemen
each quantum dot, assumingDVAB50.

In order to examine the effects of the quantum-dot
rangement, the average coupling strengthŪ8 is fixed so that
statesuS& anduP& maintain the same temporal evolution th
was found in the symmetric system. Then, the differen
between the coupling strengthsDU8 varies from 0 to6U,
where the exciton dynamics are independent of the sign
DU8. Therefore, an asymmetry factor is defined by the ra
of uDU8u to Ū8, varying from 0~symmetry! to 1 ~maximum
amount of asymmetry!.

Figure 7 presents the temporal evolution of the out
population for the energy differenceDV52U ~an AND-
logic gate case! with and without an asymmetric arrang
ment. For the one-exciton state@Fig. 7~a!#, the asymmetric
arrangement strongly affects the exciton dynamics, and
OFF state in theAND-gate operation is no longer valid be
11533
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cause the off-resonance condition for the energy transfer
tween statesuS1& and uP18& acts oppositely to the resonanc
condition between statesuA1& and uP18&. This is evident in
Eq. ~36!, for example, by comparing the matrix elemen
rS1 ,P

18
(t) with rA1 ,P

18
(t). Therefore, in the one-exciton stat

the exciton population is very sensitive to the asymme
arrangement. By contrast, the two-exciton state is not in
enced by the quantum-dot arrangement@see Fig. 7~b!#. We
also observe small and high-frequency oscillations for
dashed and dotted curves (uDU8u/Ū850.5 and 1.0) in Fig.
7~a!. These come from the coherence between statesuS1& and
uA1& which can be seen in the equations of motion
rS1 ,A1

(t) andrA1 ,S1
(t) @see Eq.~A1!#. Since the coherence

is always excited by mediating stateuP18& and the stateuP18&
has a short lifetime dominated by the relaxation constantG,
the oscillations have no relation to the population dynam
Figure 8 shows the variation in the output population at

5100 ps as a function of the asymmetry factoruDU8u/Ū8.
From this figure, it follows that the asymmetry only affec
the one-exciton state, where it breaks theOFF state in the
logic gate, as shown by the curve with squares, and the
nal contrast decreases with increasing asymmetry.

Conversely, for theXOR-logic gate (DV5U), the two-
exciton states correspond to the off-resonant states in
symmetric system. Therefore, the excitation is transferred
the output energy level in QD-C as the asymmetry fac
increases, as shown in Fig. 9~b!. Similarly, the variation in
the output population with the asymmetry factor is plotted

FIG. 7. Temporal evolution of the output populations where
energy difference is set toDV52U (\U589 meV). Parts~a! and
~b! show the populations for one- and two-exciton states, resp
tively. The solid, dashed, and dotted curves represent the result

asymmetry factorsuDU8u/Ū850, 0.5, and 1.0, respectively, wher

the average coupling strength is set to\Ū8514 meV. In part ~b!,
the three curves are almost identical.
4-10
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Fig. 10, where the time is fixed att5100 ps. The figure
shows that theXOR-logic operation in the symmetric syste
is reversed when the asymmetry factor exceeds 0.5 beca
one-exciton state can occupy the initial state ofuS1& with a
probability of 1/2, as shown in Sec. III. Consequently, t
output population also reaches a probability of 1/2. This
also valid in the asymmetric system. However, the asymm
ric arrangement enables coupling of the two-exciton sta
uP28& and uA28&. StateuP28& can be fully excited in the initial
stage, so the output population reaches a unit value via s
uA28&. This exceeds the output population 0.5 for a on
exciton state with a larger amount of asymmetry.

FIG. 8. Variation in the output populations at a fixed time ot
5100 ps as a function of the asymmetry factor, where the ene
difference is set toDV52U (\U589 meV) and an average cou

pling strength of\Ū8514 meV is used. The curves shown wit
square and circular dots represent the one- and two-exciton s
respectively. Only the exciton population in the one-exciton stat
modified by increasing the asymmetry factor.

FIG. 9. Temporal evolution of the output populations for t
energy difference ofDV5U (\U589 meV). Parts~a! and ~b!
show the populations for the one- and two-exciton states, res
tively. The solid, dashed, and dotted curves represent the result

asymmetry factorsuDU8u/Ū850, 0.5, and 1.0, respectively, wher

the average coupling strength is set to\Ū8514 meV.
11533
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An asymmetric system can also be applied to inher
nanophotonic functions. As mentioned above, the effect
asymmetry is based on coupling to statesuA&, which are
similar to the so-called ‘‘dark states’’ in an asymmetr
system.25 In other words, the populations of statesuS& and
uA& can be chosen selectively by adjusting the arrangem
of some of the quantum dots. Note that both states are
pressed by the superposition of eigenstates in isolated~non-
interacting! quantum dots. Therefore, a system composed
three quantum dots cannot only select information that
pends on the initially prepared excitations, but also inform
tion that reflects the initial quantum entangled states in
coherent operation part. From this perspective, such na
photonic devices are useful in connecting quantum dev
as a detector and interface devices which identify occupa
probability of the quantum entangled states in an input s
nal.

V. CONCLUSIONS

This paper proposed nanophotonic inherent operations
ing a three-quantum-dot system. Such a system consists
coherent operation part and an incoherent output part.
exciton state in the coherent operation part can be read
lectively by adjusting the energy level in an output quantu
dot or the size of the quantum dot. First, we derived
coupling strength induced by an optical near field a
showed that optical near-field coupling enables us to acc
dipole-forbidden energy levels for conventional far-fie
light. Then, we derived the equations of motion for the e
citon dynamics in a symmetric system to discuss the c
pling properties between the coherent operation part and
output part. Initially prepared one- and two-exciton sta
couple resonantly with the output part due to the opti
near-field coupling when the energy level in the third qua
tum dot is set higher than one and lower than in the ot
identical quantum dots. This feature is applicable to lo
operations. Using analytical solutions, we showed that

y

es,
is

c-
for

FIG. 10. Variation in the output populations at the fixed time
t5100 ps as a function of the asymmetry factor, where the ene
difference is set toDV5U (\U589 meV) and an average cou

pling strength of\Ū8514 meV is used. The curves shown wit
square and circular dots represent the one- and two-exciton st
respectively. The exciton population in the two-exciton state
ceeds that of the one-exciton state when the asymmetry fa

uDU8u/Ū8 exceeds 0.5, so theXOR-logic operation is reversed.
4-11
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system operates as anAND-logic gate when the energy dif
ference isDV52U, and it operates as anXOR-logic gate
when DV5U. Furthermore, we examined the effects
asymmetry due to the arrangement of quantum dots num
cally. The asymmetry allows coupling between statesuA&
and uP&, and uA& and uS&; these states are decoupled in t
symmetric system. Although the asymmetric arrangem
decreases the signal contrast in theAND- andXOR-logic op-
erations, it introduces a technique to manipulate the inform
tion about quantum entangled states or quantum coher
by adjusting the quantum-dot arrangement. In conclusion,
proposed functional operations~AND- and XOR-logic gates!
11533
ri-

nt

a-
ce
e

using a near-field optically coupled quantum-dot system
characteristic device operations inherent in nanophoton
including coherent and dissipative process. Such a sys
opens up a different way to nanoscale science and tech
ogy.
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d in Eqs.

,

APPENDIX: EQUATIONS OF MOTION IN AN ASYMMETRIC SYSTEM

The equations of motion for density-matrix elements in an asymmetric system are derived using the bases describe
~25! and ~26! for one-exciton states,

ṙS1 ,S1
~ t !5 iA2Ū8@rS1 ,P

18
~ t !2rP

18 ,S1
~ t !#1 iDVAB@rS1 ,A1

~ t !2rA1 ,S1
~ t !#,

ṙS1 ,P
18
~ t !5H i ~DV2U !2

G

2J rS1 ,P
18
~ t !1 iA2Ū8@rS1 ,S1

~ t !2rP
18 ,P

18
~ t !#2 iA2DU8rS1 ,A1

~ t !2 iDVABrA1 ,P
18
~ t !,

ṙP
18 ,S1

~ t !5H 2 i ~DV2U !2
G

2J rP
18 ,S1

~ t !2 iA2Ū8@rS1 ,S1
~ t !2rP

18 ,P
18
~ t !#1 iA2DU8rA1 ,S1

~ t !1 iDVABrP
18 ,A1

~ t !,

ṙP
18 ,P

18
~ t !52GrP

18 ,P
18
~ t !2 iA2Ū8@rS1 ,P

18
~ t !2rP

18 ,S1
~ t !#2 iDU8@rP

18 ,A1
~ t !2rA1 ,P

18
~ t !#,

ṙP
18 ,A1

~ t !5H 2 i ~DV1U !2
G

2J rP
18 ,A1

~ t !2 iA2Ū8rS1 ,A1
~ t !1 iA2DU8@rA1 ,A1

~ t !2rP
18 ,P

18
~ t !#1 iDVABrP

18 ,S1
~ t !,

ṙA1 ,P
18
~ t !5H i ~DV1U !2

G

2J rA1 ,P
18
~ t !1 iA2Ū8rA1 ,S1

~ t !2 iA2DU8@rA1 ,A1
~ t !2rP

18 ,P
18
~ t !#2 iDVABrS1 ,P

18
~ t !,

ṙS1 ,A1
~ t !52 i2UrS1 ,A1

~ t !2 iA2Ū8rP
18 ,A1

~ t !2 iA2DU8rS1 ,P
18
~ t !1 iDVAB@rS1 ,S1

~ t !2rA1 ,A1
~ t !#,

ṙA1 ,S1
~ t !5 i2UrA1 ,S1

~ t !1 iA2Ū8rA1 ,P
18
~ t !1 iA2DU8rP

18 ,S1
~ t !2 iDVAB@rS1 ,S1

~ t !2rA1 ,A1
~ t !#,

ṙA1 ,A1
~ t !5 iA2DU8@rP

18 ,A1
~ t !2rA1 ,P

18
~ t !#2 iDVAB@rS1 ,A1

~ t !2rA1 ,S1
~ t !#, ~A1!

whereDV5VC2
2(VA1VB)/2, DVAB5VA2VB , Ū85(UBC1UCA)/2, andDU85(UBC2UCA)/2. For two-exciton states

ṙS
28 ,S

28
~ t !52GrS

28 ,S
28
~ t !1 iA2Ū8@rS

28 ,P
28
~ t !2rP

28 ,S
28
~ t !#1 iDVAB@rS

28 ,A
28
~ t !2rA

28 ,S
28
~ t !#,

ṙS
28 ,P

28
~ t !5H 2 i ~DV1U !2

G

2J rS
28 ,P

28
~ t !1 iA2Ū8@rS

28 ,S
28
~ t !2rP

28 ,P
28
~ t !#1 iA2DU8rS

28 ,A
28
~ t !2 iDVABrA

28 ,P
28
~ t !,

ṙP
28 ,S

28
~ t !5H i ~DV1U !2

G

2J rP
28 ,S

28
~ t !2 iA2Ū8@rS

28 ,S
28
~ t !2rP

28 ,P
28
~ t !#2 iA2DU8rA

28 ,S
28
~ t !1 iDVABrP

28 ,A
28
~ t !,

ṙP
28 ,P

28
~ t !52 iA2Ū8@rS

28 ,P
28
~ t !2rP

28 ,S
28
~ t !#1 iA2DU8@rP

28 ,A
28
~ t !2rA

28 ,P
28
~ t !#,
4-12
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ṙA
28 ,P

28
~ t !5H 2 i ~DV2U !2

G

2J rA
28 ,P

28
~ t !1 iA2Ū8rA

28 ,S
28
~ t !1 iA2DU8@rA

28 ,A
28
~ t !2rP

28 ,P
28
~ t !#2 iDVABrS

28 ,P
28
~ t !,

ṙP
28 ,A

28
~ t !5H i ~DV2U !2

G

2J rP
28 ,A

28
~ t !2 iA2Ū8rS

28 ,A
28
~ t !2 iA2DU8@rA

28 ,A
28
~ t !2rP

28 ,P
28
~ t !#1 iDVABrP

28 ,S
28
~ t !,

ṙS
28 ,A

28
~ t !5~2 i2U2G!rS

28 ,A
28
~ t !2 iA2Ū8rP

28 ,A
28
~ t !1 iA2DU8rS

28 ,P
28
~ t !1 iDVAB@rS

28 ,S
28
~ t !2rA

28 ,A
28
~ t !#,

ṙA
28 ,S

28
~ t !5~ i2U2G!rA

28 ,S
28
~ t !1 iA2Ū8rA

28 ,P
28
~ t !2 iA2DU8rP

28 ,S
28
~ t !2 iDVAB@rS

28 ,S
28
~ t !2rA

28 ,A
28
~ t !#,

ṙA
28 ,A

28
~ t !52GrA

28 ,A
28
~ t !2 iA2DU8@rP

28 ,A
28
~ t !2rA

28 ,P
28
~ t !#2 iDVAB@rS

28 ,A
28
~ t !2rA

28 ,S
28
~ t !#. ~A2!
,
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