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This paper investigates the exciton dynamics in a three-quantum-dot system coupled via an optical near
field. The system consists of two identical quantum dots coupled cohefdmlgoherent operation padnd
a third quantum dot with exciton sublevelthe output pajt It provides certain characteristic functional
operations depending on the initial excitation, as well as symmetry of the coupling strengths or the spatial
arrangement. First, we analytically obtain the coupling strength between two quantum dots via an optical near
field and give a numerical estimation for a CuCl quantum-cube system. Then, a resonance condition between
the two parts is shown; this depends on the initial excitation in the coherent operation part. Using this
condition, which can be realized by adjusting the energy level of a quantum dot in the outpuinparand
XOR-logic operations can be demonstrated in a symmetrically arranged quantum-dot system. We also discuss
how the asymmetry of the system affects the energy transfer through certain coupled states in the coherent
operation part that would be forbidden in a symmetrically arranged system. Although the asymmetry degrades
the signal contrast for logic operations, it is expected to open up new techniques for novel device technologies
where quantum entangled states are mediated in the operations.
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[. INTRODUCTION bring about collective dynamics inherent in optical near-field
interactions in a system consisting of several nanometric
The miniaturization of the constituents of conventional materials‘*1®
photonic devices will reach a barrier in the near future as the In this paper, we propose functional devices which consist
device integration progresses. A*»010* matrix switch will  of several quantum dots coupled via an optical near field. For
be required to realize the necessary high data transmissiafevice operations, unidirectional signal transfer from input to
rates, which are expected to reach 40 TB/s by 2048 the  output terminals must occur. We previously proposed using
size of each element will become less than 100 nm, far beloweveral quantum dots to form the fundamental blocks of a
the diffraction limit of light. In order to overcome this bar- nanophotonic device, in which the discrete energy levels
rier, nanophotonicsin which local electromagnetic interac- resonantly couple with each other via an optical near field.
tions between nanometric materials and an optical near fielthtra-sublevel relaxation due to exciton-phonon coupling in a
are utilized® must be promising technology. Since an opticalquantum dot guarantees unidirectional energy transfer. A
near field is not limited by the diffraction of light, this tech- nanophotonic switch has been studied both experimefially
nology is expected to enable signal transfer and control irand theoretically/"*8 using such a coupled quantum-dot sys-
nanometric device elements. tem, and a switch was recently demonstrated using CucCl
The characteristic features of an optical near field can bguantum cube¥ In such nanophotonic devices using the
utilized to achieve functional operations in nanophotonic deresonant energy transfer, quantum coherence survives for a
vices, which are discussed in this paper. One such feature &hort period of time; afterwards, the excitation moves in a
the high spatial localization, which enables us to access inower-energy statt’ The proposed coupled quantum-dot
dividual nanometric elements in devices that are smaller thagystem consists of two characteristic parts similar to the
the diffraction limit of light. This feature is widely used in nanophotonic switch mentioned above: one is the portion of
scanning near-field optical microscopy and spectrosttipy  the near-field optically coupled nanometric materials that
nanometric structures,® single moleculed,and biological maintains quantum coherence, which we call toherent
specimeng. On the basis of the spatial localization of an operation part and the other determines certain final states
optical near field, an interesting phenomenon of dipole-with dissipation or decoherence, which we call theatput
forbidden energy transfer has been observed experimentalfyart. This paper focuses on taking full advantage of these
in a semiconductor quantum-dot systé®everal theoretical coherent and defined output parts to achieve functional op-
studies of a few quantum-dot systems related to optical neaerations. As a typical example, we consider the three-
field techniques have been reporfecand the dipole- quantum-dot system illustrated in Fig. 1, where the excitons
forbidden transition has been also expettééiby consider- are carriers for the signal transfer. In the system, two identi-
ing nonlocal susceptibility and a highly localized optical cal quantum dot$QD-A and -B are resonantly coupled with
field. Another characteristic feature of an optical near field issach other via an optical near field.
the anomalous dispersion relation due to the coupling be- Various authors have investigated the coupling properties
tween the photon and the material excitattdriThis can  and dynamics in a pair of quantum dots. For example, the
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COTR

Optical exciton-phonon interaction. In this manner, unidirectional
near-field energy or signal transfer is satisfied.
o /coupling

This paper examines the exciton dynamics in this system
_ illustrated in Fig. 1 using density-matrix formalism. The dy-
L nonradiative namics of the system can be determined analytically when
L three quantum dots are arranged symmetricallyp- and
XOR-logic operations can also be demonstrated by adjusting
Output the energy configuration in this three-quantum-dot system.
The asymmetry due to the coupling strength of the quantum-
dot pairs via an optl_cal near field or quantum-dot arrange-
T ment also plays an important role in the exciton dynamics.
We find that an asymmetric arrangement permits energy
) _ transfer from the coherent operation part to the output part
FIG. 1. lllustration of a three-quantum-dot system that consists i3 5 certain quantum entangled state, the so-called “dark
?f gvg)udgntlcalt:lwo-levil dOS?D'A andD- B';‘anz(jj aE:hreet-level d‘t’; state’® in a symmetric system. This characteristic feature
QD-C). Since the coupling between QD-A and -B is stronger thany, o 5 the spatial arrangement may be useful for detection of
that between QD-A and @QD-B and -G, the system is divided .

; . . . . . uantum entangled state. Here, note that these logic and
into two parts: a coherent operation part with optical nutation, anoﬁunctional operations are in the irreversible process. althouah

an output part with a dissipation process. P ! : Ireversi p_ ’ ug
guantum entangled states are partially mediated to sort out

the initial excitations. This resembles quantum information

energy shift due to exciton-exciton or Coulomb interactionsP"0c€ssing, however, we do not need long coherence time as
between electrons and holes has been evaluated theoreticajfjff duantum computation requires. Regarding quantum in-
to process quantum informatidh? and a controlledvoT formation processing with dissipation or decoherence, there
logic gate has been proposed l,Jsing the energy Zhifi. @€ several reports which are discussed such as tolerance and

these studies, excitons or qubits were controlled by two-colofl€coherence-free operat|o?‘?52.7 _ _

laser pulses of far-field light. As a similar subject to this | NS paper is organized as follows. Section Il derives the
paper, Quiroga and Johnditheoretically discussed the dy- optical near-field coupling betwee_n two energy levels in two
namics in two- and three-quantum-dot systems and presenté’(’i‘a”tum dots and s.hows the emstgnce of dlpole—forbldden
a way to prepare both quantum Bell and Greenberger-Horné"€r9y transfer med|ated. by an optlcall near fleld.. The cou-
Zeilinger entangled states, by using far-field light, which al-Pling strength is also estimated numerically and is used to
lows only global excitation of two and three quantum dotsdiScuss the exciton dynamics in a three-quantum-dot system.
with spatially symmetric arrangement. By contrast, we deaP€ction Il is devoted to the formulation of the exciton dy-
with coupled quantum-dot systems arranged symmetricallj}2mics in the relevant systg—:m u3|_ng”den3|ty—matr|x formal-
and asymmetrically, which are individually excited by the IS Here, we present the “selective” energy transfer from
optical near field, and the intra-sublevel relaxation is alsgh® coherent operation part to the output part. Based on this
considered for the unidirectional energy transfer. Note thafeature, we show that logic operations can be realized in a
the excitation in each quantum dot can be prepared individuSymmetrically arranged quantum-dot system. Section IV dis-
ally owing to the spatial localization of the optical near field. CUSSeS the effects of the asymmetry using the numerical ex-
The exciton dynamics driven by the optical near field hasCiton dynamics results. Finally, concluding remarks are given
been investigated in the case of a coupled two-quantum-ddf Sec- V.

system with a relaxation proce¥sThe energy transfer be-

tween two quantum do'gs i§ expresseq as esteo process? Il. OPTICAL NEAR-FIELD COUPLING

and the nutation of excitation occurs in the strongly coupled

or resonant energy levels, corresponding to the coherent op- In this section, we formulate an optical near-field coupling
eration part in our system. For the short period before relaxbetween two quantum dots using the multipolar QED
ation, certain coherently coupled states appear in the cohektamiltoniarf®2°in the dipole approximationg- D, wheregu

ent operation part, depending on the initial excitation. Inand D represent the transition dipole moment and electric
order to prepare the initial excitation, the shorter excitationdisplacement field, respectively. There are several advan-
time in the individual quantum dot than the energy-transfettages to use the multipolar QED Hamiltonian instead of the
time between two identical quantum dots is necessary, whermainimal coupling Hamiltoniarp- A, p being the electronic
the excitation time is inversely proportional to the optical momentum and\ the vector potential; first of all, the multi-
near-field intensity. The energy-transfer time or couplingpolar QED Hamiltonian does not contain any explicit inter-
strength via an optical near field can be controlled by adjustmolecular or inter-quantum-dot Coulomb interactions in the
ing interdot spacings. The population in the coherentlyinteraction Hamiltonian and entire contribution to the fully
coupled states can be transferred to the third quantum doétarded result originates from exchange of transverse pho-
(QD-C) if the energy level of QD-C is adjusted to couple tons, while in the minimal coupling, the intermolecular inter-
resonantly with the entangled states in the coherent operaticactions arise both from exchange of transverse photons,
part. If this happens, QD-C operates as the output part, whictvhich include static components, and from instantaneous in-
involves an intra-sublevel relaxation process due to théermolecular electrostatic interactiotfsSecond, it clarifies

=
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physical interpretation of the dipole-forbidden transition viaexciton-polaritons because a nanometric system in a near-
the optical near field as discussed below. Basic ideas in thield optical environment is always surrounded by macro-
formulation are to express internal electronic structures in &copic materials, such as the substrate, matrix, fiber probe,
quantum dot regarding them as collection of local dipolesand so on. Previousf{:*>we proposed an effective interac-
and to investigate the interactions between nanometric matéion for such a nanometric system mediated by exciton-
rials and spatially varied optical near fields. We can alsgolaritons that are expressed in mixed states between pho-
depict multipoles for a single quantum dot by using antons and macroscopic material excitations instead of free
effective-mass approximation. Such theoretical approach hgshotons. We showed that such a treatment provides a good
been already publishétwhere the enhancement of electric description of the characteristics of an optical near ffald.
quadrupole coupling was pointed out by assuming steepsing this, the electric displacement vectd(r) in Eq. (1)
variation of electric field due to the optical near field. This can be written ¢
phenomenon is equivalent to our result of the dipole-
forbidden transition, but the field variation in our theoretical A P 2 o o
formulation is caused by the coupling between the local di-  D(r)=i /VE > e (Kf(K)(Zek— e k),
poles in the neighboring quantum-dot pgsee Fig. 2)]. ko a=1

In the following sections, we present the interaction (4)
Hamiltonian in second-quantized form in terms of eIectronWith
basis functions satisfying the quantum-dot boundary condi-

tions, as well as transition dipole moments of excitons, and > 5
derive an optical near-field coupling on the basis of the pro- F(k)— fhck \/ E<(k)—Ef 5
jection operator method we previously proposed. VE(K) V 2E%(k)—E2—#2c%K?

A. Interaction Hamiltonian wherer, V, g (k), andk are the Dirac constant, the quanti-

zation volume, the unit polarization vector, and the wave
vector of the exciton-polaritons, respectively. Here we as-
%’umeq(k) as real. The speed of light in a vacuuntjsand
the exciton-polariton energy with a wave vectorand the

R R macroscopic material excitation energy &¢€k) and E,,,

Hin= —J’ STy m(r)y(r) - D(r)dr, (1) respectively. Substituting Eq&2) and (4) into Eq. (1) gives

the interaction Hamiltonian in the second-quantized repre-

where '(r) and ¢(r) denote field operators for electron sentation as
creation and annihilation, respectively, and the dipole mo-

According to the dipole coupling in the multipolar Hamil-
tonian, the interaction between photons and nanometric m
terials can be written 43

ment and the second-quantized electric displacement vector ap Ao ar A oA

o 2 . int— Z (CT C ! 'gkg ! rk)\_CT C ! IETg ’ ’—k)\)
at positionr are expressed g&(r) andD(r), respectively. In int i vt SkSvnvn '
a quantum dot, the electron field operators should be ex- (6)

panded in terms of basis functions,,(r) that satisfy the ]
electron boundary conditions in a quantum dot, which isWith
analogous to those in bulk materials where the Bloch func-

tions satisfying periodic boundary condition are used. The . 2771c K "
field operators are given by Gonvrnia= 1\ 77 F(K) [ @5q(1)

) ) e (K)]ek b (dr. (7
P(r)= 2 ; Con®on(1), wT(r):VZ ; C:r/n(ﬁtn(r)r X[p(r)-e(k)]e™ ', (r)dr (7)

v=C,v =C,v
(2 B. Transition moments for exciton states

wherec! andc,, represent the creation and annihilation In order to describe the creation and annihilation of exci-

operators for the electrons specified byrf), respectively, tons in a quantum dot, it is convenient to use the Wannier
and the indicesr=c,v denote the conduction and valence representation in which electrons are localized in an atomic

bands. The discrete energy levels in the quantum dot arite R. Then, the electron field operators can be expanded
labeledn. The basis functions satisfy the following com- using the Wannier functions,g(r) instead of¢ (),
pleteness condition, as well as orthonormalization:

w(r)z 2 E aVRWVR(r)l l//T(r)z E E 6IRW:R(r)1
2 Zn ¢:n(r)¢yn(r,):5(r_r,)' (3) v=c,v R v=c,v R (8)

v=C,v
§imultaneously, we express the electric displacement VeCtQ/r/herecIR andc,g denote the creation and annihilation op-
D(r) using exciton-polariton creation and annihilation opera-erators of electrons at site in the energy band. These
tors @I ,&), where branch suffix of the exciton-polariton is opgrators in the Wannier representation are written in terms
suppressed by taking only an upper branch. We considesf c,,, in Eq. (2) as follows:
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C,r™ 2 2 Cun WtR(r)(l’V'n(r)dru E gunlcnzk)\hanR’n1

V'=C,U n ng,Ny
_ 2T * ikt
= ‘/_v f(k)J W (1) (N Weri (1) - &, (K e/ Tdr

. [2m ik-R
~ =i\ (KL pe, - e (k) ]e™ " orpr (14
When we assume excitons in the weak-confinement regime,

i.e., an exciton Bohr radius to be smaller than the quantumwhere the transformation of the spatial integral in the first
dot size, the exciton states in a quantum dot specified by thkne of Eq. (14) into the sum of the unit cells and the spatial
guantum numbem and . can be described by superposition localization of the Wannier functions providetg in the

Ca= 2 2 ¢, | wR @), (ndr. ©)

v'=cyo

of the excitons in the Wannier representatiofras second line. The transition dipole moment for each unit cell
is defined as
_ of &
|<I>m#>—R§F‘;, Fn(Rem) @u(B)Cer Corl Py, Py = f WXR(1) (1) Wer(r)dr. (15)
s uc
_ At A We assume that the transition dipole moment is the same as
RER Fm(RC'm)‘P“(ﬁ)E Mo ConCon'| ), that of the bulk material, independent of the $eand that

the electric displacement vector is uniform at each site. Fi-

(10 nally, Eq.(12) is reduced to
where F (R, ) and ¢ denote the envelope functions . 2 2
for the cné(ntcerpz)f mass;f(alf])d relative motions o?the excitons, (Pg|Hind Py =1/ 7; zk 21 f(k)
respectively. These afe; ,,= (MR’ +m,R)/(m.+m;) and =
B=R’ —R, wherem, andm,, are the effective masses of the X[ Mey - & (K) JF(R) @, (0)
electrons and holes. The overlap integtaisg ,,» are defined o o
as X (g R—Ele 1k R), (16)

Here, we note that the exciton-polariton field expanded by
. . the plane wave with the wave vectodepends on the site
hRnR’n':f f WyR(T2)Werr (T1) den(T1) ynr (r2)dradrs. in the quantum dot because we do not apply the long-wave
(11 approximation that is usually used for far-field light.

The sum ofy’ in Eq. (9) is determined automatically éré‘n C. Optical near-field coupling

andc,, because the valence band is fully occupied in the T0 derive the coupling strength between two quantum
initial ground statg®). Using Eqgs.(6) and (10), the tran- dots due to the optical near-field interaction, we use the pro-

sition moment from the exciton state to the ground state idection operator method, which was reported in detail in our
obtained as previous papet’ In this method, the eigenstates of a total

optical near-field system are divided into two subspaces: a
relevantP space constructed from the two energy levels for
each quantum dot and the exciton-polariton vacuum state,
and an irrelevantQ space that is complementary to tRe

space and includes exciton-polariton states. Using this for-

2 . . . .
. . mulation, the coupling strength is given to the lowest order
X Ek )21 (fkgvnlcnzk)\_ flgvnlcnsz)\) as

<q)g||:|int|q)mp.>: 2 E Fm(Rc.m)‘Pp.(B)

n1,N2 R R’

X hgn, ke 12 . "
12 AU=3 (WT| i m)(mO iy ¥)

where we use the following relation: 1 1

+ , 17
Egi - Egm ng - EOQm

<(Dg| alnlécnzaz%au n4| q)g> =9

13 (13

Mafa™n2Ng* whereE} , Ef;, andEQ,, represent the eigenenergies of the
unperturbed Hamiltonian for the initial and final statesPin
In addition, with the help of the completeness and orthonorspace and the intermediate stateQnspace, respectively.
malization of¢,,(r) [see Eq(3)], we can simplify the prod- Since we focus on the interdot interaction of E#7), we

uct of g andh as set the initial and final states P space to|¥})

115334-4



LOGIC AND FUNCTIONAL OPERATIONS USING A.. .. PHYSICAL REVIEW B59, 115334 (2004

:|<pﬁw>|q)g'3>|o> aﬂdl‘l’f>=|¢’é>|<bqu>|0)- Then, the in- Where the exciton-polariton effective mass is rewritten as

. . . . . — 2 H H A B
termediate states i@ space that involve exciton-polaritons Ep=m,C*. Since the dipole momenta, and u;, are not
with the wave vectok are utilized for the energy transfer determined as fixed values, we assume that they are parallel,
from one quantum dot to the other, according [o?) ~ and take a rotational average of E1). Therefore,

=|0)|D)|k) and [@h, )| D5, )|K). The superscriptsh  ((#g, Rae)(#c, Rap)) = teyhte,/3 with ug,=|ug,|, and
andB are used to label two quantum dots. Substituting EqWe obtain the final form of the functio¥,(Rag) as
(16), one can rewrite Eq.17) as 0 A B
. . YalRag) = 5o (W, A2 & 4 e
MU= 60062 (0) [ [ FARIFE (Ro)IYARA—Ro) s
—W,_ A% e da-Rag), (23)
+Yg(Ryo—Rg)JdRAdRg, (18)

) ) Equation(23) is the sum of two Yukawa functions with a
where the sum oR, («=A,B) in Eq.(16) is transformed 10 ghot ang long interaction rangéeavy and light effective
the mtegra_ll form. The function¥,(R,g), whlchAconnect the mas$ given by the second equation in E€2). We can
s%atlally isolated two envelope functionS(Ra) and  estimate the coupling strength between two quantum dots
Fm(Rs), are defined as from the analytic form of the interaction potential given by
Egs.(18) and(23), and we can show the existence of dipole-
forbidden energy transfer driven by the optical near-field

2
1 - -
- 2 A B 2
Ya(Rap)= 42 =1 f Lpte, - e (k) ILate, - 0 (K) 1T (K) coupling, as discussed in the following section.

( elk-Rag e ik-Rap
X

+
E()+E,  E(k)~E, In this section, we give typical values of the coupling
whereR,g=Ra—Rg is used. In order to obtain an explicit strength ofiU in Eqg. (18) using an example of CuCl quan-
functional form of Y, (Rag), we apply the effective-mass tum cubes embedded in a NaCl matrix. Due to the effect of
approximation to the exciton-polaritons, size confinement, the center-of-mass motion and relative mo-
tion for an exciton in a CuCl quantum cube &re

2 3/2_ TMX, )\ .
T sin 3 sin

a

)dk, (19) D. Numerical results

2k2
E(k)z m"rEm, (20)
p

meya) ) ( wmzza)

Fa(R,)= - :

a a

wherem, is the exciton-polariton effective mass. Using this
approximation, Eq(19) can be transformed into

e—r/a

1
(P]_s(r)_ \/ﬁg ’

respectively, where the atomic site and the quantum number
are represented bRR,=(X,,Y41Z,) With a=A,B and m
=(m,,my,m,) with m,,my,m,=1,23.... Thevariables
L, anda denote a width of the quantum cube and the Bohr
radius of the exciton, respectively. Here, we assume relative
W, e da+Ras motion in the & state. The coupling strength is obtained
numerically by substituting Eq$23) and(24) into Eq. (18).
In Fig. 2(@), the calculation results are plotted as a function
Af,+ 3A,. 3 of the intercube distance. The curve with square dots repre-
Rag * szxs + RTAB sents the coupling between the dipole-active exciton levels,
i.e., m=m’'=(1,1,1), in two quantum cubes. When we set

Ai-%— ACH- 1 (24)

-A, 4R
Wa+e a+PAB[ —— > 3
AB R R
AB AB

Ya( I:QAB) = (Méu ’ MEU)

AZ
—Wae‘AaRAB<L+ 2

a L 1
Rag RiB RiB

- (ﬂ@u : QAB)(M?U : QAB)

A2 3A,. 3 the intercube distance and a width of the quantum cubes as
—W,_e “«-Ras R—+ >—+T—= ||, @) d=5nm andL,=Lg=10 nm, respectively, which corre-
AB  Rag AB sponds to the resonant coupling between QD-A and -B in

Fig. 1, the coupling strength is about 8@V (U~ !
=7.4 ps). The curve with circular dots is the result for
=(1,1,1) andm’=(2,1,1). For conventional far-field light,
m’=(2,1,1) is the dipole-forbidden exciton level, and it fol-

whereR,g andR,p are the absolute valy®,g| and the unit
vector defined byRag/Rag, respectively. The weight coef-
ficientsW,.. and decay constants,.. are given by

Ep (Epm—E)(Em+E,) lows that the optical near-field interaction inherently in-
W%:E_ — > volves such a transition because of the finite interaction
« (Em=Ep+Eo)(Em*E,) —ER/2 range. Figure @) is a schematic illustration of the dipole-
forbidden transition, in which the optical near field enables
A = im 22) to excite the local dipoles at the near side in a quantum dot
= pct PTMT Ten with dipole-forbidden level for far-field light. This coupling
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strength is estimated from Fig(& as#U=37 ueV (U1 150} -
=17.7ps) for d=5nm, and AU=14 puev (U @
=46.9 ps) ford=15 nm, where the cube sizes are set as 100l
LAo=10 nm andLg=14.1 nm to realize resonant energy
transfer between the two quantum cubes. The coupling
strength (h#m’) is approximately half that ah=m' at the
same intercube distance, but it is strong enough for our pro-
posed nanophotonic devices. For functional operations, the of. ) ) ) K
difference between the coupling strengths can be used to 0 5 10 15 20
divide the system into two parts, i.e., the coherent operation Interdot distance: d (nm)
and the output parts. Therefore, in the following discussion (b)
of the functional operations, we uge=5 nm as the values
of the coupling strength between QD-A and B, add B
=15 nm for that between QD-A and C or QD-B and C. RINEE At
a1 | e

50F

Potential (ueV)

I1l. EXCITON DYNAMICS AND THEIR APPLICATION TO

FUNCTIONAL OPERATIONS FIG. 2. (a) Optical near-field interaction potential for pairs of

A. Symmetric and antisymmetric states CuCl quantum cubes embedded in a NaCl matrix. The curves

. . . . L shown with square and circular dots correspond to quantum num-
In this section, we discuss the exciton dynamics in a SyMpers for the exciton center-of-mass motion=m’ ~(1,1,1), and

metrically arranged three-quantum-dot system, as shown ig—(1,1,1) andm’'=(2,1,1), respectively. The energy leve
Fig. 1. The asymmetric effects on the dynamics are consid=(2,1,1) is a dipole-forbidden state for conventional far-field light.
ered in the subsequent section. From the symmetry of thehe parameters are set ®,=Ez=3.22 eV, E,;=6.9 eV, wh
system, the following bases are suitable for describing the- ul =1.73x1072 (eV nnP)Y2 L,=10 nm,Lg=10 and 14.1 nm

dynamics using the smallest number of density-matrixm’'=(1,1,1) and (2,1,)], anda=0.67 nm.(b) Schematic illustra-

element&: tion of a transition between dipole-allowed and dipole-forbidden
states via the optical near-field coupling. Steeply gradient optical
1 near field enables to excite near side local dipoles in a quantum dot
|S)= E(|A* BC,C,)+|AB*C,C,)), with dipole-forbidden (2,1,1) level.
1 1S)= = (|A*BC C) +|ABF CIC)
[A2)= T (IA"BC1Co)~AB*C:C), V2
1
P/)=|ABC,C}), |P,;)=|ABC!C,). (25) |A2)=—=(|A*BCI C;)—|AB*CICy)),
1 2 1 \/5

One-exciton statdescribes the condition whereby an exciton -
exists in either one of the three quantum dots. The ground |P2)=|ABCIC3), (27)

and exciton states in each quantum dot, written ushg)  \yhere|s) and|A) represent symmetric and antisymmetric
and|®f ) in the preceding section, are represented hergates in the coherent operation part, respectively, and the
simply asA, B, C; (i=1,2), andA*, B*, C", respectively. subscripts 1 and 2 on the left-hand sides in Eg5), (26),
Similarly, atwo-exciton staténdicates that two excitons stay and(27) denote the one- and two-exciton states, respectively.
in the system. The suitable bases for the two-exciton statg# the following, we use these bases to evaluate the exciton

without occupation of the lower energy level in QD-C are dynamics in the three-quantum-dot system.
expressed as

B. Equations of motion and coupling properties

|Sy) = i(|A* BC,C%)+|AB*C,C%)), Based on the results of optical neaj-field coupling in Sec.
\/E Il, a model Hamiltonian for the systel is given by
A=~ (|A*BC,CH)~ |AB*C,CE)) H=Hot R
2 \/E 1%>2 1~27/7) 5
Ho=%QATA+7QBTB+7 >, 0 CIC,
[P2)=|A*B*C1Cy), (26) =t

and those with occupation of the lower energy level are ex-H,=#U(ATB+BA)+4U'(BTC,+CIB+CIA+ATE,),
pressed as (28
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FIG. 3. Schematic drawing of exciton creation and annihilation |— | [7*[["* [T B Y. T e
operators and the energy-transfer process in a three-quantum-d M
system. The optical near-field couplings for the quantum-dot pairse——| |—| [— R ) P—  p—

are represented by 55 for QD-A and -B,Ugc for QD-B and -C,

and U, for QD-C and -A. The nonradiative relaxation constant FIG. 4. Schematic explanation of selective energy transfer for
due to exciton-phonon coupling is denoted By (a) one- and(b) two-exciton states. The left and right illustrations

represent the initial and final states, respectively. The energy trans-
fer between stated) and|P) is forbidden because of symmetry.

where the definitions of the creation and annihilation OperaTherefore the resonance conditions for the energy transfer between
t t 1 y
tors, (A",A), (8",8), and (C[,C)), are shown schemati- gizreqi) "and |P) are fi(Q+U)= fiQc, (AQ=U) for a one-

cally in Fig. 3. The eigenfrequencies for QD-Aand -B are set,, .ion state and 20 =%(Q+ 0 +U) (AQ=—U) for a two-
to Q,=0p=(, and the optical near-field coupling for the exciton state ( A )

symmetric system is denoted &k,g=U and Ugc=Ucp
=U’'. The equation of motion for the density operator of theand

quantum-dot systemp(t), is expressed using the Born-

Markov approximatiorf as bsé,sé(t)=i J2u '{Psé,pé(t)—Ppé,sé(t)}—Fpsé,sé.
i .. | DN
p(t)=— —[Ho+Hin.p(1) ]+ 5 {2CIC,p(t) CIC : r
p(t) ﬁ[ ot Hint,p(1)] 2{ 1C2p(1)C5Cy ps, (t)— —i(AQ+U)— ]ps'p(t)
—CIC,ClIC,p(t)—p(tHCIC,CIC (29 . ,
o 2P p(_ 1GiCal, . +iy2u {ps; s,() = ppy py(1)],
where the nonradiative relaxation constant due to exciton-
phonon coupling is denoted d5 The radiative relaxation _ T
due to exciton-free photon coupling is omitted because the ppéysé(t)— iI(AQ+U)— ]pp 5/(t)
time scale of the optical near-field coupling and the exciton-
phonon coupling is much faster than the radiative lifetime, —i2U {pg /(1) = pp: pr (D)},
2'72 2 2

which is of the order of a few nanoseconds. Taking matrix
elements of Eq(29) in terms of Egs.(25 and (26) after ) )
substituting Eq(28) into Eq. (29), we obtain the following Py pi()=—1V2U"{ps; pr() = ppy 5 (1)}, (3D)
simultaneous differential equations: .
where the density-matrix elemet|p(t)| ) is abbreviated
,'Jsl]sl(t):i \/EU,{psl'Pi(t)_ppi'Sl(t)}’ P p(t) and the energy diﬁerenc@cz—ﬂ is replaced by
AQ. The equations of motion in terms of the bases of Eq.
) r (27) are not shown, but are derived similarly. Although other
pslypi(t)=[|(AQ U)-— ]ps P! H(t)+i J2u’ {psl s, ( (1) matrix elements related to the antisymmetric sta#esalso
appear in the equations of motion, they are decoupled from
—ppr pr (D}, the above equations and do not affect the exciton dynamics
e of the symmetric states.
_ r States|$1> and |P;) or |S;) and |P5) are coherently
ppi'sl(t):{ —i(AQ—-U)— ]pp 50— iJ2u’ {ps,.5,(1) coupled with each other, as shown by E(QO) and (3_1).
Moreover, it is noteworthy that the energy difference in Egs.
—ppr pr(D)} (30) and (31) makes opposite contributions to the one- and
two-exciton dynamics a& () —U andAQ + U, respectively.
) This coupling property can be explained by considering the
ppiypi(t)z—i \/EU,{pslypi(t)_ppiysl(t)}_rppiypi(t), energy levels of a coupled system constructed from three
quantum dots. Figure (4 shows the energy levels of a
- . coupled system for one-exciton states. The upper and lower
pey P (D=Dpp; pi (1), (30 energy levels are split by the optical near-field coupling,
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corresponding to the statéS;) and|A;), respectively. This equation similar to Eq(32), except for the sign obl, i.e.,

is confirmed by evaluating the expectation values, i.e.with the resonance conditions inverted. The probability of an
(Si|A|S1)>(A,|A|A,). Afilled circle indicates that an ex- €Xciton occupying the lower energy level in QD-C is

citon occupies the corresponding energy level, while a semi-

circle indicates that an exciton exists in the energy level in pszysz(t)erpzypz(t)

either QD-A or -B with a certain probability. In order to
realize the resonant energy transfer into the output part via
state|P;), we must set the energy level in QD-C A<)

=U to satisfy the resonance condition of sta{&s) and

|P:). This is because the matrix elemef®;|H;,|A;) is —
zero, so that this transition is forbidden in symmetric sys-

tems. For the two-exciton states, one exciton is always trans-

ferred from statéP) to stategS,) and|P,) via state|S)).

Figure 4b) shows the energy levels of a coupled system for

states|P5) and|S}). In this case, the center of the energy

splitting due to the optical near-field coupling becomesyith
h(Q+QCZ). Therefore, the resonance condition of states

|P5) and|S;}) can be fulfilled whelAQ = —U is satisfied. 1
Here, note that the coupling between stdfes and|Aj) is w’i=7[(AQ+U)2+W+W_

also forbidden by Aj|H;,|P4)=0. These characteristic en- 2

ergy transfers allow us to pick up selective information about + J{(AQ+U)Z+ W2 H(AQ+U)Z+ W2} 12
either the one- or two-exciton states, i.e., information about
the initial exciton populations in the coherent operation part.
The results are utilized for the functional logic operations as
discussed below.

t
= FJ ps; s, (t")dt’

1 4u'? ) ) ,
2| -+ ———={cos¢’, cogw’ t+ ¢ )
2 w\2-0'?

—cos¢’ cofw’ t+ ¢ ) e ] (34

r

ZwL)

¢ =tan ! (35

C. Dynamics and logic operations where the factor 2 in Eq.34) comes from the initial condi-

Analytic solutions of Eqs(30) and(31) for typical initial tions for the two-exciton state, I-Eppé,pé(O)= 1 and other-

conditions can be obtained readily with the help of Laplace/Vise€ zero.

transforms. The output population for the one-exciton state We Wwill now discuss the characteristic behaviors de-
can be written as scribed by Egs(32) and (34) using a CuCl quantum-cube

system that has the coupling strengths calculated in Sec. II:

L[t e hAU=89 ueV and AU'=14 ueV. Figure %a) shows the

pey P, (D=T"] ppy pr(t1)dt temporal evolution of the output populatignp_p (t) for
" some energy differences(). The fastest energy transfer is

1 4u observed for the conditioA() =U (dotted curve, where the

2 population can reach half of the maximum value. This is

because the coherent operation part couples with the output
—cos¢_cogw_t+¢ )te "™ (32 partin the one-exciton state via stat&s) and|P}). How-
with ever, statdS,) is not fully occupied when we set the initial
condition so that only one quantum cube is excited indepen-
1 dently. In other words, statéA;), which decouples state
w.=—[(AQ—-U)?>+W,W_ |[P1) in a symmetric system, is excited simultaneously, and
V2 the population remains in the same stpAg) without tem-

Y 2 2 21112 poral evolution. Conversely, for two-exciton statgSig.
* \/{(AQ U)Z+ WEH(AQ=U) "+ W 5(b)], the energy transfer occurs under the resonance condi-

20 tion AQ=—U and the population can reach unity because
¢.=tan ! F+)’ the initial state] P5) is independent of staté\,).
The steepness of the resonance determines the contrast of
I the output signal. In Fig. 6, the population &t 100 ps,
W.=2\2U"+—, (33) which is the time until energy transfgr is almost completed
2 under resonance conditiods() =+ U, is plotted as a func-

tion of the energy differenc& () for the one- and two-
exciton states, as shown by the solid and dashed curves, re-
. spectively. We clearly find that two types of switching
(A*BC,Cy|p(t)|A*BC,C,)=1 and otherwise zero. Solu- operations can be realized by choosing the appropriate en-
tions for the two-exciton states can be obtained from arergy differenceAQ=+U. From Eqs.(32) and(34), narrow

for the initial condition psl'sl(o):pAl'Al(O):psl’Al(o)
=pAlvsl(0)=1/2, which corresponds to the condition

115334-8



LOGIC AND FUNCTIONAL OPERATIONS USING A.. .. PHYSICAL REVIEW B59, 115334 (2004

ol T ] TABLE |. Relationship between the input and output popula-
- G tions for the energy differencé )=+ U.
-,% 0.6 : Input Output: C
2 04 A B AQ=-U AQ=U
o L =
ool o _o--7T 0 0 0 0
0.0f 1 0 0 0.5
0 50 100 150 200 250 300 0 1 0 0.5
Time (ps) 1 1 1 0
critical limit of these logic gates is determined by the follow-
s ing condition; the energy-transfer time from the coherent op-
§ eration part to the output part, which is estimated about 50 ps
§ for the CuCl quantum-cube system, is enough shorter than
the radiative lifetime -1 ns) of excitons in each quantum
dot.

0 50 100 150 200 250 300
Time (ps) IV. EFFECTS OF ASYMMETRY ON EXCITON DYNAMICS

FIG. 5. Temporal evolution of the output populations fay It is valuable to examine the exciton dynamics in an

one- and(b) two-exciton states. The solid,. dashed, and dottedasymmetricauy arranged quantum-dot system to estimate the
curves represent the results for the energy differen@e= —U, 0,

iy tvely. Th ‘ =89 eV AU’ fabrication tolerance for the system described above and to
andv, respec |ve7yl. € paramelers are seb 1= o3 uev, propose further functional operations inherent in nanophoto-
=14 peV, andI'"*=10 ps. The output population for the one- . . . .

. . nic devices. In this section, we demonstrate the effects of
exciton state does not exceed a value of @ horizontal gray asvmmetrv numericallv. In addition. we comment on a posi-
line) because of the initial conditions. . y Y Y. . ’ e P .

tive use of these effects, i.e., the possibility of accessing
quantum entangled states depending on the prepared initial
excitation in a quantum-dot system. The simultaneous differ-
%ntial equations in an asymmetric system are given in part by

peaks are obtained wheiv, <1 andW_=0, i.e., 2J2u’
~T'/2<1. In this case, a high contrast logic operation can be
achieved.

These results are summarized in Table I, which shows the
logic operations inherent in nanophotonic dewces using typlpS s (tH)=i2U’ [Ps P! (t)—ppr s ()] FiIAQAG[ps A (1)
cal coherent process and the process with decoherence that"’ e 1
occur in a quantum-dot system. The system behaves as an —pa. s (D],
AND-logic gate when the energy difference is setAtf) = v
—U, and the system provides aR-like-logic operation
whenAQ=U. The value 0.5 indicates that the signal can be . ) r —
detected at a 1/2 probability level. As explained in the Intro- Psl,Pi(t):{'(AQ_U)_ E] ps, p (D) +i \/EU'[Psl,Sl(t)
duction, these operations are different from the quantum

logic, and long quantum coherence time is unnecessary. The —ppilpi(t)]—i \/EAU/Psl,Al(t)
10fF ' ' ' ] —1AQpgpa, p(D),
0.8}
< .
g % Pay A (D=1V2AU [ppr a (D)= pa, pr(D)]
§ 0.4} _
“ o2} —1AQaplps, A, ()= pa, s (D],
0.0}
-200  -100 0 100 200 . . r . —,
Energy shift (ueV) pAl,Pi(t): I(AQ+U)_ E pAl,Pi(t)—’—l\/EU pAl,Sl(t)
FIG. 6. Variation in the output populations at a fixed timet of —i\/EAU’[pA A () —pp pr(D)]
=100 ps as a function of the energy different@. The solid and E 1
dashed curves represent the one- and two-exciton states, respec- _iAQABpsl,Pi(t)! (36)

tively. The optical near-field coupling strength®) and2U’ and
the nonradiative relaxation constanthave the same values as in
Fig. 5. for the one-exciton states, and

115334-9



SANGU, KOBAYASHI, SHOJIGUCHI, AND OHTSU PHYSICAL REVIEW B59, 115334 (2004

psy () =—Tpg, () +iy2U'[pg; pr(t) = pp; 5;(1)] 1.0 (a)
. 0.8}
+HiAQpglpsy Al (D)= pay s (D], 5 ool — ]
© o7
g_ 0.4f a o7
: . r . -y 9) . .7
psy py(t)= _|(AQ+U)_§ Psé,Pé(t)‘H\/EU [psy sy() T g2l R ]
) 0.0__,2;/.
— Y —+ ! ’oAT L L . N . . N
peypy(U] 28U Ps; At 0 50 100 150 200 250 300
—1AQagpay py(1), Time (ps)
' 1.0} (b)
pay A () ==Tpp; ar(t)—i V2AU "[opy Al ()= pay pi(D)] 0.8}
. S osf
—1AQnelps) al() = pay s (D], s
3 04}
&
. _ r i * o2f
pay (=] —I(AQ=U)= S pay pr(1)+iV2U' pay (1) ool ]
. , B 0 50 100 150 200 250 300
+i\2AU [oay Al ()= ppy ps(1)] Time (ps)
_iAQABpS}F’é(t)' 37) FIG. 7. Temporal evolution of the output populations where the

. energy difference is set ) =—U (AU=89 neV). Partga) and
f_or the two-_exmton states. Here, we only present the e_qua(‘b) show the populations for one- and two-exciton states, respec-
tions that differ from Eqs(30) and (31) (see the Appendix jely The solid, dashed, and dotted curves represent the resuits for

for more details and we redefine the parimete&ﬂ asymmetry factor$AU’|/U’ =0, 0.5, and 1.0, respectively, where
=Qc,~(QatQp)/2,  AQpA=0x—Qp, U'=(Usc the average coupling strength is setftd’ =14 peV. In part(b),
+Ucp)/2, and AU'=(Ugc—Ucp)/2. In the asymmetric the three curves are almost identical.

system, the exciton dynamics between stg®sand|P) do

rTOt change', provided the coupling strengtﬂfo'r asymmet-  ;ause the off-resonance condition for the energy transfer be-
ric system is replaced by the average valliein Egs.(36)  tyeen state$S,;) and|P;) acts oppositely to the resonance
and(37). The main d|ﬁ§rence is that the matnx elements forcondition between statd#,) and|P}). This is evident in
stategA) can couple with statgss) and|P) in an asymmet- Eq. (36), for example, by comparing the matrix elements

ric system, while these are decoupled in a symmetric system. (1) with /(t). Therefore, in the one-exciton state
Two types of coupling emerge in an asymmetric system: one >1*F1 Pay P\ ' ’

originates from the energy differenceQ 5 between QD-A the exciton population is very sensitiv_e to the a_lsymm_etric
and -B, and the other comes from the arrangement of tharrangement. By contrast, the two-exciton s_tate is not influ-
three quantum dots, which is expressed using the parametgfced by the quantum-dot arrangemgsete Fig. )]. We
AU’. Previously'” we discussed the influence of the energyalso observe small and hlgh—fre_quency oscillations for the
difference on the exciton dynamics in a two-quantum-dotdashed and dotted curveg\J'|/U’=0.5 and 1.0) in Fig.
system that mainly degrades the signal contrast. Here, wé(@). These come from the coherence between st&gsand
focus on the effects of asymmetry due to the arrangement gf\;) which can be seen in the equations of motion of
each quantum dot, assumidg),g=0. psl,Al(t) andpAl,Sl(t) [see Eqg.(Al)]. Since the coherence

In order to examine the effects of the quantum-dot aris always excited by mediating stdte;) and the stat¢P;)
rangement, the average coupling streridthis fixed so that has a short lifetime dominated by the relaxation conskant
stateg S) and|P) maintain the same temporal evolution that the oscillations have no relation to the population dynamics.
was found in the symmetric system. Then, the differencd=igure 8 shows the variation in the output populatiort at
between the coupling strengtidd)’ varies from 0 to=U, =100 ps as a function of the asymmetry fackAiU’|/U’.
where the exciton dynamics are independent of the sign ofrom this figure, it follows that the asymmetry only affects
AU’. Therefore, an asymmetry factor is defined by the ratiqhe one-exciton state, where it breaks ther state in the
of |AU’| to U’, varying from O(symmetry to 1 (maximum logic gate, as shown by the curve with squares, and the sig-
amount of asymmetjy nal contrast decreases with increasing asymmetry.

Figure 7 presents the temporal evolution of the output Conversely, for thexor-logic gate AQ2=U), the two-
population for the energy differencA{Q)=—-U (an AND-  exciton states correspond to the off-resonant states in the
logic gate casewith and without an asymmetric arrange- symmetric system. Therefore, the excitation is transferred to
ment. For the one-exciton stafEig. 7(a)], the asymmetric the output energy level in QD-C as the asymmetry factor
arrangement strongly affects the exciton dynamics, and thicreases, as shown in Fig(t9. Similarly, the variation in
OFF state in theaND-gate operation is no longer valid be- the output population with the asymmetry factor is plotted in
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FIG. 8. Variation in the output populations at a fixed timet of
=100 ps as a function of the asymmetry factor, where the energy FIG. 10. Variation in the output populations at the fixed time of
difference is set td Q) =—U (AU=89 ueV) and an average cou- t=100 ps as a function of the asymmetry factor, where the energy
pling strength ofzU’ =14 ueV is used. The curves shown with difference is set tadQ=U (#U=89 ueV) and an average cou-
square and circular dots represent the one- and two-exciton statg¥jng strength ofiU’=14 eV is used. The curves shown with
respectively. Only the exciton population in the one-exciton state issquare and circular dots represent the one- and two-exciton states,
modified by increasing the asymmetry factor. respectively. The exciton population in the two-exciton state ex-
ceeds that of the one-exciton state when the asymmetry factor
Fig. 10, where the time is fixed at=100 ps. The figure |AU’|/U’ exceeds 0.5, so theor-logic operation is reversed.
shows that thexor-logic operation in the symmetric system
is reversed when the asymmetry factor exceeds 0.5 because aan asymmetric system can also be applied to inherent
one-exciton state can occupy the initial state®f) with a  npanophotonic functions. As mentioned above, the effect of
probability of 1/2, as shown in Sec. lll. Consequently, theasymmetry is based on coupling to statés, which are
output population also reaches a probability of 1/2. This issimilar to the so-called “dark states” in an asymmetric
also valid in the asymmetric system. However, the asymmetsysten?® In other words, the populations of state®) and
ric arrangement enables coupling of the two-exciton statefa) can be chosen selectively by adjusting the arrangement
|P3) and|A;). State|P;) can be fully excited in the initial of some of the quantum dots. Note that both states are ex-
stage, so the output population reaches a unit value via stat@gessed by the superposition of eigenstates in isolated-
|A). This exceeds the output population 0.5 for a one-nteracting quantum dots. Therefore, a system composed of

exciton state with a larger amount of asymmetry. three quantum dots cannot only select information that de-
e pends on the initially prepared excitations, but also informa-
1.0F (a) 1 tion that reflects the initial quantum entangled states in the
osl ] coherent operation part. From this perspective, such nano-
< photonic devices are useful in connecting quantum devices
S 0.6} ; ; (R ; ;
5 as a detector and interface devices which identify occupation
§ 0.4} probability of the quantum entangled states in an input sig-
T 4ol nal.
0.0 .
0 50 100 150 200 250 300 V. CONCLUSIONS
Time (ps) This paper proposed nanophotonic inherent operations us-

ing a three-quantum-dot system. Such a system consists of a

1.0+ e, d

°r ® PR coherent operation part and an incoherent output part. The

- 0.8 e ] exciton state in the coherent operation part can be read se-
g o6 P 1 lectively by adjusting the energy level in an output quantum
3 o4l 7 ] dot or the size of the quantum dot. First, we derived the
s R coupling strength induced by an optical near field and

R ] showed that optical near-field coupling enables us to access
0.0f 1 dipole-forbidden energy levels for conventional far-field
0 50 100 150 200 250 300 light. Then, we derived the equations of motion for the ex-

Time (ps) citon dynamics in a symmetric system to discuss the cou-

pling properties between the coherent operation part and the
FIG. 9. Temporal evolution of the output populations for the output part. Initially prepared one- and two-exciton states
energy difference oAQ=U (AU=89 ueV). Parts(a) and (b)  couple resonantly with the output part due to the optical
show the populations for the one- and two-exciton states, respegear-field coupling when the energy level in the third quan-
tively. The solid, dashed, and dotted curves represent the results fenm dot is set higher than one and lower than in the other
asymmetry factorfAU’|/U’=0, 0.5, and 1.0, respectively, where identical quantum dots. This feature is applicable to logic
the average coupling strength is setio’ =14 peV. operations. Using analytical solutions, we showed that the
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system operates as amD-logic gate when the energy dif- using a near-field optically coupled quantum-dot system and
ference isAQ)=—U, and it operates as axDR-logic gate characteristic device operations inherent in nanophotonics,
when AQ=U. Furthermore, we examined the effects of including coherent and dissipative process. Such a system
asymmetry due to the arrangement of quantum dots numerdpens up a different way to nanoscale science and technol-
cally. The asymmetry allows coupling between stdtés  ogy.
and|P), and|A) and|S); these states are decoupled in the
symmetric system. Although the asymmetric arrangement
decreases the signal contrast in tid- and XOR-logic op-
erations, it introduces a technique to manipulate the informa- The authors thank Dr. T. Kawazddapan Science and
tion about quantum entangled states or quantum coherendechnology Agency for kindly providing experimental in-

by adjusting the quantum-dot arrangement. In conclusion, wérmation about CuCl quantum dots and the dynamics driven
proposed functional operatiofaND- and XOR-logic gate$ by optical near-field interactions.
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APPENDIX: EQUATIONS OF MOTION IN AN ASYMMETRIC SYSTEM

The equations of motion for density-matrix elements in an asymmetric system are derived using the bases described in Egs.
(25) and(26) for one-exciton states,

ps, 5, (D=1\2U"[ps, pi() = pp s (D] +IAQ el ps, A, (1)~ pa,.s (D],
. ) I Jy— ) )
ps, p (D)= : (AQ-U)— 5] ps, p (D +i V2U'[ps, s,(1) —ppy ey (D] V24U ps a (1) —i AQpgpa, p(1),

- . r = . .
PPi,sl(t)=| —i(AQ—-U)—- E}Ppi,sl(t)_l \/EU'[Psl,sl(t)_PPi,Pi(t)]“"\/EAU’PAl,sl(t)""AQABPPi,Al(t),
pe; p1()=—Tpp; pr(t)=1\2U'[ps, pr(t) = pp; s (D] =1AU [pp; a (1) = pa, p1(D)],

: . r e . .
pp;,Al<t>=( —i(AQ+U)- 5] pey (D =120 s a (D +1V2AU [pa, (D)= pp; o (D] +iAQpepp; 5,(1),

: _ r — _ , _
pAl,Pi(t):[l(AQ-"U)_E]PAl,Pi(t)'H\/EU PAl,sl(t)_l\/EAU [oa, A, (D= ppr pr(D)]=TAQAgps, p: (1),
ps, a,()=—12Upg A ()=iV2U pp; o () =iV2AU pg, pr() +iAQagl ps, 5,(1) = pa, a, (D],
Pay5,(0=12Upa 5 (0 +1V2U" pa, pr (D) +iV2AU ppr 5, (1) —1AQaelps, 5, (1) = pay a (D],

Paya(D=1V2AU [ppr o (D)= pa, p1(D]=1AQaglps, (D)~ pa, 5, (D], (A1)

whereAQ=0c —(Qa+Q5)/2, AQpg=0a—Q0p, U'=(UgctUca)/2, andAU’=(Ugc—Uca)/2. For two-exciton states,

bsé,sé(t) == FPS&,S’(U +i \/EU,[pSé,Pé(t) _PPé,Sé(t)] +i AQAB[DS&,A&(U - PAé,sé(t)],

2
. . r — R .
psypy(0)=1 = 1(AQ+U) = = pg; pr(t) +12U [pg) () = ppy py(1)]+1 V28U psy ar(1) =182 agpAy py (1),
. : r : 11’ : ’ ;
Ppy s, (D)= |(AQ+U)_§ PPé,sé(t)_l\/EU [PSé,Sé(t)_pPé,Pé(t)]_l\/EAU Ay, s (D+HTAQagpps (1),

pry py(1)=—1V2U[ps, py(t) = pp; ()] +1 V20U [ppy ar(t) = pay py(D)],
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: . r = . , .
pAé,Pé(t):[_l(AQ_U)_E]pAé,Pé(t)‘H\/EU PAé,sé(t)""\/EAU [PAé,Aé(t)_pPé,Pé(t)]_|AQABPS§,Pé(t)a
- . r = . , .

PPé,Aé(t): |(AQ_U)_§ pPé,Aé(t)_l\/EU pSé,Aé(t)_l\/zAU [PAé,Aé(t)_pPé,Pé(t)]"_|AQABPP£,S§(U:

bSé,Aé(t) =(—i2U-T)pg) ()~ \/EU,PPé,Aé(t) +i2AU 'psy,p (1) HTAQAg[ps) 5 (1) — pas ar(D)],

Pag. (D)= (12U=T)pay (1) +1V2U pay py(1)=iV2AU ppy /(1) ~iAQ nel ps; (1)~ P ag(D],

pay A () =—Tpp; ar(t)—i V2AU "[ppy Ay ()= pay py(D)]—TAQ AR ps) A1 (1) = pas sy(D)]- (A2)
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